
Amplitude and Frequency Demodulation

Controller for MEMS Accelerometer
by

Lane Gearle Brooks

Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2001

c© Lane Gearle Brooks, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .

Department of Electrical Engineering and Computer Science
December 15, 2000

Certified by. .

Paul Ward
Charles Stark Draper Laboratory

Thesis Supervisor

Certified by. .
Rahul Sarpeshkar

Assistant Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Amplitude and Frequency Demodulation Controller for

MEMS Accelerometer

by

Lane Gearle Brooks

Submitted to the Department of Electrical Engineering and Computer Science
on December 15, 2000, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science

and
Master of Engineering in Computer Science and Engineering

Abstract

Draper Laboratory is developing a high precision MEMS accelerometer. This thesis
describes and analyzes the electronics which produce the acceleration estimate and
control the actuators within the sensor. The Vector Readout method of amplitude and
frequency demodulation is described and shown to be a high precision, environmen-
tally stable method of demodulation. The Vector Readout method of demodulation
uses a Hilbert Transform filter and the CORDIC algorithm to simultaneously esti-
mate both the amplitude and phase of a signal. A feedback controller is designed to
hold the oscillation of a mass resonator at a constant amplitude.

Thesis Supervisor: Paul Ward
Title: Charles Stark Draper Laboratory

Thesis Supervisor: Rahul Sarpeshkar
Title: Assistant Professor

3

4

Acknowledgments

The thesis was prepared at The Charles Starke Draper Laboratory, Inc., under Draper

Laboratory IR&D project 13066. Publication of this thesis does not constitute ap-

proval by Draper or the sponsoring agency of the findings or conclusions contained

herein. It is published for the exchange and stimulation of ideas.

Author

Lane Brooks

I must thank many people who have helped me to get to this point. There are

the obvious people of my parents, wife, family, and teachers. There are also several

people that I must specifically acknowledge in helping me with this project:

Paul Ward: Paul is my advisor at Draper Laboratory, and he has generously given of

his time in discussions with me. It is through these discussions and his written

documents that I learned a lot of this material. He and others had been thinking

about this project well before I started it, and they really laid the foundation of it.

Dave McGorty: I worked with Dave in implementing this project. His digital logic im-

plementation experience greatly helped me. Furthermore, he helped to develop the

demodulation method used for this project.

Rich Elliott, Marc Weinberg: I worked for Rich and Marc for two summers testing

MEMS gyros prior to working on this thesis. It is their time and efforts with me that

enabled me to understand much of the physics and control issues with this project.

Rahul Sarpeshkar: Professor Sarpeshkar and others in his group provided very useful

feedback on this project. His probing questions really forced me to think about

alternatives and subtleties. Furthermore, Professor Sarpeshkar was my recitation

instructor who taught me almost everything I know about classical control, so he is

the one who enabled me to figure out and write Chapter 6 of this thesis.

Other Draper Employees: Tom King, Amy Duwel, Nathan St. Michael, Brian Johann-

son, Judy Nettles all helped me out in various ways with this project.

5

6

Contents

1 Introduction 15

1.1 Project Overview . 15

1.2 Sensor Details . 16

1.2.1 Readout Details . 17

1.2.2 Control Details . 18

1.3 Thesis Overview . 19

2 Vector Readout Method of Demodulation 21

2.1 Vector Readout Overview . 21

2.2 A/D Converter . 23

2.3 Quadrature Generation Via Hilbert Transform 24

2.3.1 Ideal Hilbert Transform Filter 24

2.3.2 FIR Hilbert Transform Filter 26

2.4 CORDIC Algorithm . 28

2.5 Implementation Details . 32

3 Frequency Demodulation Analysis 35

3.1 Noise Source Definitions and Metrics 35

3.2 Vector Readout FM Demodulation Analysis 38

3.2.1 Intrinsic Noise of Vector Readout Method 39

3.2.2 Input Noise Sensitivity . 50

3.3 FM Demodulation Comparison . 52

3.4 Conclusion . 55

7

4 Mapping Frequency To Acceleration 57

4.1 Compensation Methods . 57

4.1.1 First Order Compensators . 60

4.1.2 Spring Stiffness Variation . 63

4.1.3 Sampling Clock Drift . 65

4.1.4 Noisy Frequency Estimates . 66

4.1.5 Compensation Method Selection 73

4.1.6 Parameter Selection . 73

5 Amplitude Demodulation Analysis 75

5.1 Noise Source Definitions . 75

5.2 Vector Readout AM Demodulation Analysis 76

5.2.1 Intrinsic Noise . 77

5.2.2 Input Noise . 78

5.2.3 Summary . 79

5.3 AM Demodulation Comparison . 80

5.3.1 Conclusion . 81

6 Controller Design 83

6.1 Amplitude Disturbances . 83

6.2 Sensitivity of Acceleration Measurement To Amplitude 85

6.3 Controller Overview . 87

6.4 Amplitude Control . 89

6.4.1 The Amplitude Transfer Function of the Plant 89

6.4.2 The Transfer Function of the Demodulator 93

6.4.3 Defining Nominal System Parameters 94

6.4.4 Designing The Controller . 95

6.4.5 Designing Around the Open Loop Transfer Function 106

6.4.6 Stability Margins . 107

6.5 Conclusion . 109

8

7 Conclusion 111

7.1 Design Specification Check . 111

7.1.1 Dynamic Range (1µg to 100g) 111

7.2 Implementation Details . 113

7.3 Data Collection Software . 117

7.4 Real Data . 119

7.5 Next Stage . 120

9

10

List of Figures

1-1 Accelerometer Input/Output Representation 17

1-2 Block Diagram of General Readout Tasks 18

1-3 Block Diagram of Readout & Controller Tasks 19

2-1 Vector Readout Method of AM and FM Demodulation. 22

2-2 In-Phase & Quadrature Signals Represented as a Complex Vector. . . 22

2-3 Implementation Block Diagram of Vector Readout Method. 23

2-4 Implementation of Hilbert Transform Filter and In-Phase Delay. . . . 28

2-5 Example of CORDIC Algorithm . 31

3-1 The Ideal FM Demodulator Outputs the Instantaneous Frequency. . . 35

3-2 Non-Ideal FM Demodulator Representation 36

3-3 Additive Input Noise Representation 36

3-4 Output Noise Representation . 37

3-5 Block Diagram of Vector Readout Method of FM Demodulation. . . . 38

3-6 A/D Quantization Noise Represented as Additive Noise Source 39

3-7 Unit Sample and Frequency Response of Hilbert Transform Filter. . . 41

3-8 A/D & Hilbert Transformer Noise Representation 42

3-9 Ripple in Pass Band of Hilbert Transform Filter 43

3-10 Single Noise Source Representation 45

3-11 PSD of Frequency Estimate Noise . 49

4-1 Different Compensation Methods . 59

4-2 Spring Stiffness Common Mode Variation with Matched Parameters. 64

11

4-3 Acceleration Bias From Common and Differential Frequency Noise . . 68

4-4 White Noise Random Walk . 70

4-5 Differentiated White Noise Random Walk 72

5-1 The Ideal AM Demodulator Outputs the Instantaneous Amplitude. . 75

5-2 Amplitude Demodulation Using Vector Readout method 76

5-3 Nature of Bias From Vector Readout AM Demodulation 80

6-1 Comparison of Approximated and Simulated Natural Frequency . . . 86

6-2 AGC Controller Block Diagram . 88

6-3 Outer Loop Collapsed To A Variable Gain Block Labeled AGC. . . . 88

6-4 Amplitude Controller Block Diagram Reduction 90

6-5 Controller With Amplitude Demodulation Dynamics Included 93

6-6 Plant and AM Demodulation Transfer Function. 94

6-7 Amplitude Controller Block Diagram 95

6-8 Control Loop With Additive Disturbance 96

6-9 Amplitude Control Loop With Additive Noise 98

6-10 Closed Loop Amplitude Demodulation Noise Response. 99

6-11 First Order Σ-∆ Modulator. 101

6-12 D/A Conversion With Σ-∆ Modulator. 102

6-13 Quantization Noise From Σ-∆ D/A AGC Conversion. 104

6-14 Block Diagram Depicting Additive Σ-∆ Quantization Noise 105

6-15 Σ-∆ Quantization Noise To Amplitude Transfer Function. 105

6-16 Open Loop Transfer Function of System. 106

6-17 Open Loop Transfer Function With Q Variation 109

6-18 Open Loop Transfer Function With ωn Variation 110

7-1 Data Collection Software . 118

7-2 Data Collected From Accelerometer 119

12

List of Tables

3.1 Summary of Intrinsic Noise Sources on the Downsampled Estimate of

the Phase. 47

3.2 Summary of Frequency Estimation Errors Using Vector Readout Method

for FM Demodulation. 53

4.1 Summary of Spring Stiffness Variation Results 64

4.2 Acceleration Bias Resulting From Sampling Clock Drift. 66

4.3 Comparison Acceleration Estimation Bias Under Different Compensa-

tion methods . 68

4.4 Variance and Velocity Random Walk From White Frequency Noise . 70

4.5 Variance and Velocity Random Walk From Differentiated White Noise 72

6.1 Nominal Values For Sensitivity of Accelerometer to Changes in Ampli-

tude. 87

6.2 Nominal Accelerometer System Values 94

7.1 Acceleration Estimation Bias Errors and Velocity Estimation Random

Walk. 114

7.2 Summary of Resource Usage and Total Gate Count. 116

13

14

Chapter 1

Introduction

1.1 Project Overview

Draper Laboratory is working to build a high precision MEMS Vibratory Accelerom-

eter (VA), and the project discussed in this thesis is part of that effort. The tasks

of this thesis are to design, analyze, and implement two components of the system.

One is the signal processing which produces the acceleration readout, and the other

is the controller which controls the resonator within the accelerometer to ensure an

accurate acceleration readout.

Project Objectives

Within the Vibratory Accelerometer is an oscillating mass whose spring stiffness

changes as a function of the acceleration. This changing spring stiffness changes

the resonant frequency of the oscillator—just as when one tunes a guitar string, the

natural frequency of the string changes as the spring stiffness of the string changes.

As a result, there are two specific tasks that the electronics of the accelerometer must

perform.

Readout Objectives: One task is to generate a readout signal indicating the amount

of acceleration the device is experiencing. This is done by determining the in-

stantaneous frequency of the output signal of the accelerometer and translating

15

that frequency into an acceleration estimate.

Controller Objectives: The second task is to generate a control signal to hold

the amplitude of the resonating mass constant. This is necessary to obtain an

accurate readout measurement because the resonator has non-linearities which

couple the amplitude and frequency.

Design Specifications

The accelerometer must meet very aggressive design specifications which are:

Dynamic Range: 1µg to 100g

Acceleration Error: < 1µg

Velocity Random Walk: < 0.014 ft
s
√

hr

To ensure that the electronics can meet these constraints, the system will be analyzed

under two conditions. The first is under the assumption that the resonator within

the accelerometer is an ideal second order system. Then the intrinsic noise sources

of the electronics can be characterized and analyzed to ensure that they can meet

the specification. The second condition which will be analyzed is when various noise

sources that model the imperfections of the system are injected into the signal path.

This will ensure that the the electronics are designed well enough so that the system

as a whole can meet the design specifications.

1.2 Sensor Details

For this project, the accelerometer can be represented as a block as shown in Figure 1-

1∗. One input, labeled f(t), is the force applied to the resonating mass within the

sensor. This force keeps it oscillating. The other input signal, labeled g(t), is the

acceleration that the device experiences, and it is the signal that we are trying to

estimate for readout. The output signal, labeled x(t) in Figure 1-1, is a measurement

∗For simplicity, only one oscillator is included in this discussion. In reality there is a second
oscillator which produces a fully differential signal. The second oscillator is discussed only when it
is applicable.

16

VA
-

-
-g(t)

f(t)
x(t) Figure 1-1: Accelerometer Input/Output

Representation

of the position of a mass resonator within the sensor. Modeling the resonator as a

second-order system, the position can be described by the differential equation

mẍ(t) + bẋ(t) + k(t)x(t) = f(t), (1.1)

where m is the mass, b is the viscous damping, and k(t) is the spring constant of

the mass resonator. Notice that k(t) is not constant. It can be modeled as an affine

function† of g(t):

k(t) = k1 + kgg(t). (1.2)

1.2.1 Readout Details

The goal of this accelerometer is to obtain an estimate ĝ(t) of the actual acceleration

g(t) using the position signal x(t). The model of the position and acceleration signals

as expressed in Equations 1.1 and 1.2 provides a the relationship between x(t) and

g(t). However, since k(t) is not constant, solving Equation 1.1 for x(t) in a closed form

is difficult if not impossible. Several books, such as Reference [6], have been devoted

to techniques of finding approximations to the solution of Equation 1.1 in closed form

under certain constraints. We will use some of these approximations later. Now, we

make a simple approximation to the solution by realizing that when k(t) is constant

and when the force being applied exactly cancels the damping (f(t) = bẋ(t)) that the

system will ring at its natural frequency, which is ωn =
√

k(t)
m

. Thus, if the controller

is built to force the system to ring at its natural frequency, then the relation between

the frequency of the position signal and the acceleration will be

ωn(t) =

√

k1 + kgg(t)

m
. (1.3)

†Since the affine relationship dominates, higher order relations between k(t) and g(t) will be
neglected.

17

This means that if the position signal x(t) is frequency demodulated to find the

instantaneous operating frequency of the resonator, we will have obtained an estimate

ω̂n(t) of the actual natural frequency ωn(t). Since it is possible to invert Equation 1.3,

the acceleration can then be estimated as

ĝ(t) =
m

kg
ω̂2
n(t) +

k1

kg
. (1.4)

Therefore, we have a means of estimating the acceleration g(t) by frequency de-

modulating the position signal x(t) and then performing the nonlinear compensation

described in Equation 1.4. This is shown in the block diagram in Figure 1-2.

VA

-

-
-

g(t)

f(t)

x(t) FM
Demod -

ω̂n(t) Non-Linear
Compensation

-
ĝ(t)

Figure 1-2: Block Diagram of General Readout Tasks

1.2.2 Control Details

In order to find an accurate estimate of the acceleration, the electronics must hold the

amplitude of the resonators constant. The reason can be seen when a cubic spring

force is added to the differential equation in Equation 1.1. The resulting equation is

a nonlinear differential equation as follows:

mẍ(t) + bẋ(t) + k(t)x(t) + k3x
3(t) = f(t). (1.5)

With this additional term in the equation, the natural frequency described in

Equation 1.3 becomes

ωn(t) =

√

k1 + kgg(t) + 3
4
k3α2(t)

m
(1.6)

where α(t) is the oscillation amplitude of the resonator and k3 is the cubic spring

18

constant [12]. This shows that the amplitude is coupled with the frequency and that

if the amplitude of the oscillators is not held constant, then false estimates of g(t)

will be obtained because changes in amplitude α(t) will be interpreted as changes in

g(t).

The first task to controlling the amplitude is to estimate the amplitude. This

must be done by amplitude demodulating the position signal x(t). Then a controller

can adjust the driving force f(t) in such a way as to hold the amplitude fixed. These

tasks are included in the block diagram in Figure 1-3.

VA

-

-
-

g(t)

f(t)

x(t) FM
Demod -

ω̂n(t) Non-Linear
Compensator

-
ĝ(t)

AM
Demod

-

?
�

â(t)

Controller
� Amplitude Set Point

Figure 1-3: Block Diagram of Readout & Controller Tasks

1.3 Thesis Overview

Figure 1-3 shows the blocks that are designed and analyzed in this thesis. Chapter 2

introduces an AM and FM demodulation technique called the Vector Readout Method.

This method is not a well known method, but it presents the best solution to this

design problem. Thus in Chapter 3 the FM demodulation abilities of this technique

are rigorously analyzed and compared to other frequency demodulation methods, and

then in Chapter 5 the amplitude demodulation abilities are analyzed and compared

to other methods. In Chapter 4 the non-linear compensator is analyzed and designed

to meet the specifications. Finally, the controller is designed in Chapter 6.

19

20

Chapter 2

Vector Readout Method of

Demodulation

The Vector Readout method of demodulation is a technique which can be used to

AM and FM demodulate a signal simultaneously. It was invented for this project

by Paul Ward and Dave McGorty of Draper Laboratory [12]. Subsequently, similar

ideas were found in other publications [4], but these neglect implementation details.

The method invented by Paul Ward and Dave McGorty and presented here is unique

in that it provides very efficient algorithms which make the Vector Readout method

practical.

2.1 Vector Readout Overview

Given a signal that is both amplitude and frequency modulated

x(t) = a(t) cos θ(t),

the goal in AM demodulation is to find the instantaneous amplitude a(t), and the

goal in FM demodulation is to find the instantaneous frequency ω(t), which is the

derivative of the phase

ω(t) =
dθ(t)

dt
.

21

Generate
Quadrature-

-

-

x(t)

y(t)

x(t)
Rectangular

To Polar
Coordinate
Conversion -Differentiate -

-

θ(t) ω(t)

a(t)a(t)

Figure 2-1: Vector Readout Method of AM and FM Demodulation.

The block diagram of Figure 2-1 illustrates the procedures of the Vector Readout

method of demodulation. The first step is to generate a quadrature (90◦ phase shifted)

signal y(t) which is

y(t) = a(t) sin θ(t).

The quadrature signal y(t) and in-phase signal x(t) can be thought of as a complex

rotating vector represented in rectangular coordinates as shown in Figure 2-2. This

vector has a radius of a(t) and an angle of θ(t), so the instantaneous amplitude and

phase can be obtained if the vector is converted from rectangular to polar coordinates.

The phase can then be differentiated to yield the frequency.

��
�

�
�

���

Im{·}

a(t) cos θ(t)

a(t) sin θ(t)

a(t)

θ(t)

a(t)ejθ(t)

Re{·} Figure 2-2: In-Phase & Quadrature Sig-
nals Represented as a Complex Vector.

The tasks presented above are not easily implemented in analog circuits, but

there are digital algorithms which can perform the tasks of Figure 2-1 efficiently.

Namely, the quadrature generation can be performed by a Hilbert Transform filter,

and the rectangular to polar coordinate conversion can be performed by the CORDIC

algorithm. Furthermore, it is shown in Chapters 3 and 5 that using these specific

algorithms, the Vector Readout method is able to perform a high-precision, stable

AM and FM demodulation.

The remainder of this Chapter focuses on the implementation details of the Vector

Readout method. A block diagram of the implementation details is provided in

22

Figure 2-3. Notice that since this is a digital method, that an A/D converter has

1−z−1 -

-

ω[n]

Derivative

-

--

-

-A/D

6

Delay

h[n]

CORDIC
-

y[n]

x[n]

x(t)

T Hilbert

θ[n]

a[n]

Figure 2-3: Implementation Block Diagram of Vector Readout Method.

been introduced. Also notice that a delay block has been added to the in-phase

signal path. This is to keep the in-phase and quadrature channels synchronous as

will be explained later.

2.2 A/D Converter

The first step of the Vector Readout Method is to sample the input signal x(t). The

two concerns with sampling a signal are that quantization and aliasing be suppressed

to acceptable levels. The effects of quantization will be considered in Chapters 3

and 5, but here we find the appropriate sampling rate to ensure that aliasing is below

acceptable levels.

The signal to be demodulated can be expressed as

x(t) = a(t) cos θ(t)

= a(t) cos[ωct+ κcv(t)]

= a(t) cosκcv(t)
︸ ︷︷ ︸

a1(t)

cosωct− a(t) sinκcv(t)
︸ ︷︷ ︸

a2(t)

sinωct

= a1(t) cosωct− a2(t) sinωct (2.1)

where ωc is the carrier frequency, κc is the modulation scale factor, and v(t) is the

phase modulation (or the integral of the frequency modulation). Furthermore, Equa-

tion 2.1 allows us to view x(t) as the difference of two AM signals where a1(t) and

a2(t) are the amplitude modulations. If we assume that a1(t) and a2(t) are band lim-

ited to Ωc, then the carrier frequency ωc must be greater than Ωc in order that a(t)

23

and θ(t) be recoverable [9], and since the total bandwidth of x(t) will be Ωc +ωc, the

total bandwidth will always be less than 2ωc. Thus, to ensure no aliasing when x(t)

is sampled, the sampling frequency must be at least 4ωc, which means the sampling

time must be

T <
π

2ωc
.

When this condition is satisfied, the discrete-time signal can be expressed as

x[n] = x(nT) = a[n] cos θ[n]

= a[n] cos(ωdn+ κdv[n])

= a[n] cos κdv[n]
︸ ︷︷ ︸

a1[n]

cosωdn− a[n] sin κdv[n]
︸ ︷︷ ︸

a2[n]

sinωdn

= a1[n] cosωdn− a2[n] sinωdn (2.2)

where ωd = ωcT and κd = κcT . Thus, the discrete-time signal also looks like an

amplitude modulation and has all the information the continuous-time signal has

insofar as aliasing does not occur.

2.3 Quadrature Generation Via Hilbert Transform

2.3.1 Ideal Hilbert Transform Filter

Following the A/D converter is the Hilbert Transform filter which generates the

quadrature signal. The transfer function of the ideal discrete-time Hilbert Trans-

form is

H(ejΩ) =

j, −π < Ω < 0

−j, 0 < Ω < π.
(2.3)

The Hilbert Transform filter has unity gain and causes a −90◦ phase shift to real

signals. Since it is linear, we can consider how each part of x[n] as defined in Equa-

tion 2.2 gets affected by the Hilbert Transform filter separately. If a1[n] has a Fourier

24

transform A1(e
jΩ), then

a1[n] =
1

2π

∫ π

−π
A1(e

jΩ)ejΩn dΩ,

so we define the first term of Equation 2.2 as

x1[n] = a1[n] cosωdn

=
1

4π

∫ π

−π
A1(e

jΩ)
(

ej(Ω+ωd)n + ej(Ω−ωd)n
)

dΩ.

and when x1[n] is sent into the Hilbert Transform filter, the output will be

y1[n] =
1

4π

∫ π

−π
A1(e

jΩ)
(

−jej(Ω+ωd)n + jej(Ω−ωd)n
)

dΩ

=

(

ejωdn − e−jωdn

2j

)

︸ ︷︷ ︸

sinωdn

1

2π

∫ π

−π
A1(e

jΩ)ejΩn dΩ
︸ ︷︷ ︸

a1[n]

= a1[n] sinωdn

A similar derivation shows that when the second term of x[n] as define in Equation 2.2

goes through the Hilbert Transform filter it becomes

x2[n] = −a2[n] sinωdn
H(ejΩ)−→ y2[n] = a2[n] cosωdn.

The complete result is the sum of y1[n] and y2[n] which is

y[n] = a1[n] sinωdn + a2[n] cosωdn

= a[n] cos κdv[n] sinωdn + a[n] sin κdv[n] cosωdn

= a[n] sin (ωdn+ κdv[n])

= a[n] sin θ[n].

Thus, the Hilbert Transform filter produces a perfect quadrature signal

x[n] = a[n] cos θ[n]
H(ejΩ)−→ y[n] = a[n] sin θ[n].

25

2.3.2 FIR Hilbert Transform Filter

The problem with using the ideal Hilbert Transform filter as defined in Equation 2.3

is that its unit sample response is [7]

h[n] =

2 sin2(πn/2)

πn
, n 6= 0,

0, n = 0,
0 2 4 6 8

-2-4-6-8

· · ·

2
3π 2

5π
2
7π

−2
3π

−2
5π

−2
7π

2
π

−2
π

· · ·
n

r r r r r rrrr

r

r
r rrr r

r

and this is a non-causal, IIR filter (which is impossible to implement). Thus one

can only approximate the ideal Hilbert Transform filter. Anti-symmetric FIR filters

make good candidates for this approximation because, while their gain has ripple on

it, they produce the desired −90◦ phase shift over all frequencies.

In discussing anti-symmetric FIR filters it is easier to analyze them with their

unit sample response centered at the origin. Such a filter is non-causal, but since the

unit sample response is finite, it can be delayed or shifted to the right to be made

causal. Since the filter is anti-symmetric, this shift will result in an additive linear

phase term, which is a constant group delay, so the in-phase channel must also be

delayed by the same amount to keep it synchronous with the quadrature channel.

The unit sample response of the ideal Hilbert Transform filter is anti-symmetric, so

one could employ any number of windowing techniques to produce an anti-symmetric

FIR filter that approximates the ideal Hilbert Transform filter [7]. However, since

any anti-symmetric filter produces an exact −90◦ phase shift over all frequencies, one

need not restrict themselves to an all-pass filter approximation. One can use the

Hilbert Transform filter as a bandpass filter so that it rejects certain signal bands

while producing the desired phase shift on other bands (however, as we shall see,

there can be hardware savings if the frequency response is kept symmetric).

The fact that the phase of any anti-symmetric FIR filter causes an exact −90◦

phase shift over all frequencies can be seen by considering its frequency response.

Consider an example of a length 3 filter with unit sample response h[n] defined as

h[n] = aδ[n+1] − aδ[n−1].
0

2

-2 n

a

−a

r r r r rrr
r

r

26

Its Fourier transform is

H(ejΩ) = aejΩ − ae−jΩ

= 2ja sin Ω.

It is not hard to extend this example to show that any odd-length anti-symmetric

filter of length N has a frequency response

H(ejΩ) = 2j
(N−1)/2
∑

k=1

ak sin kΩ.

This has a magnitude and phase of

∣
∣
∣H(ejΩ)

∣
∣
∣ = 2

∣
∣
∣
∣
∣
∣

(N−1)/2
∑

k=1

ak sin kΩ

∣
∣
∣
∣
∣
∣

(2.4)

6 H(ejΩ) =

90◦, −π < Ω < 0

−90◦, 0 < Ω < π
(2.5)

So the phase is a perfect −90◦ shift, but since the magnitude is a sum of sine waves,

the gain response will have a ripple on it. Therefore, the filter coefficients need to

be chosen so that the gain of the filter is as flat as possible over the bandwidth of

interest. Note that this filter has an automatic zero at zero and π, and if the gain

response is kept symmetric, then the odd harmonics of the sum of sine waves will be

zero [8]. This means that half the filter coefficients will be zero and that the filter can

be implemented with half the multiplications it would require otherwise. This makes

for an efficient implementation.

The gain ripple can be made arbitrarily small, but this is at the expense of making

the filter larger, which requires more hardware and increases the delay needed to make

the filter causal. The gain ripple introduces error in demodulation, and its effects are

characterized in Chapters 3 and 5. If the Optimal or Equiripple filter approximation

[7] technique is to design the Hilbert Transform filter, then the gain ripple will be

bounded over the bandwidth of interest (which means we can bound the error which

27

results in the demodulation).

Once the filter is designed, it will need to be made causal. If the number of taps

in the filter is N and N is odd, then the unit sample response must be shifted by

(N−1)/2 samples. Then to account for this delay in the quadrature channel, the

in-phase channel also needs to be delayed by (N−1)/2 samples. This suggests that

an odd-length filter is better so as to avoid implementing a half-sample-delay filter.

If the FIR filter is implemented in Direct Form then the delay lines between the

in-phase and quadrature channels can be shared as shown in Figure 2-4. This Figure

also shows that the even filter coefficients are zero thus saving on the number of

multiplications and additions.

h h h

- z−1 z−1 z−1z−1

?
L
LL�

��

- - -

z−1

?

?

L
LL�

��

z−1

?

?

L
LL�

��

z−1

?

?

L
LL�

��

- - - - - -

-

-

y[n]

x[n]

x[n + n0]

−a3 −a1 a1 a3

+ + +

Figure 2-4: Implementation of Hilbert Transform Filter and In-Phase Delay.

While folding is not shown in Figure 2-4, this figure makes it obvious that another

savings in the number of multiplications could be obtained by folding the filter so

that taps with opposite coefficients are subtracted first and then multiplied by the

coefficient. Folding would reduce the number of multiplies by a factor of 2, and so

by keeping the frequency response symmetric and by folding the filter, the number of

multiplications can be cut by a factor of 4.

2.4 CORDIC Algorithm

As shown in Figure 2-3, the CORDIC block follows the Quadrature generation block,

and it is used to convert the vector from rectangular to polar coordinates. This

algorithm was first published in 1959 by Jack Volder [10] and since then has been

28

extended to handle many different transcendental functions such as ln(), tanh(), mul-

tiplication, division, sin(), and cos() [11]. The beauty of this algorithm is that it

requires no multiplications. It only requires shift registers, adders/subtractors, and a

small lookup table. This is amazing considering that a conversion from rectangular

to polar coordinates is defined mathematically as

a =
√

x2 + y2

θ = arctan
(
y

x

)

The CORDIC algorithm works by taking the vector stored in rectangular coordinates

and successively rotating it to have zero angle (which means the y register gets mapped

to 0 and the x register gets mapped to the amplitude a).

[x y] −→ [a 0]

The total amount of rotation is tracked to produce the angle estimate. On the ith

iteration, the vector is rotated by an angle αi according to the following relation:

xi+1

yi+1

 =

cosαi sinαi

− sinαi cosαi

xi

yi

 (2.6)

The angle of rotation αi is picked a priori to be αi = arctan 2−i, which means that

sinαi =
2−i√

1 + 2−2i
and cosαi =

1√
1 + 2−2i

. So if we plug these relations into

Equation 2.6, it yields

xi+1

yi+1

 =

1√
1 + 2−2i

1 2−i

−2−i 1

xi

yi

 . (2.7)

If we did not have that scale factor in front of the matrix in the above equation, it

would be easy to perform the above rotation in digital logic since it is easy to multiply

a number by 2−i (this corresponds to a shift). So we if choose to neglect performing

the normalization imposed by the scale factor in Equation 2.7, then on each iteration,

29

our vector will grow in magnitude. For this application this amplitude growth can be

neglected since after a fixed number of iterations the total growth scale factor will be

fixed. In other applications this gain may be an issue, so at the end, the vector can

be returned to its actual magnitude in a single normalization step. It turns out that

this gain approaches approximately 2.647 . . . as the number of iterations gets large,

so it is very reasonable to neglect it for this application.

Remember the goal is to rotate the vector to have an angle of zero, so on each

iteration the CORDIC block must decide whether it will rotate by a positive angle or

negative angle. It decides based on the value of the yi register. If yi is negative, then

to get the angle closer to zero, it must rotate by a positive αi, and conversely, if yi is

positive then it must rotate by a negative αi. Therefore, the transformation on each

iteration is

xi+1

yi+1

 =

1 ±2−i

∓2−i 1

xi

yi

 .

As it makes this decision on each iteration, it also must update the register which

tracks the total amount of rotation. To do this, it must have the actual value of each

αi stored in a lookup table, and then on each iteration it looks up the corresponding

value of the αi and then either adds or subtracts it from the running total depending

on whether it rotated by a positive or negative angle.

Figure 2-5 provides an example of the CORDIC algorithm after it has run 5

iterations. The values of the xi, yi, and θi (where θi is the running total of the

amount of rotation) are provided on each step. As the number of iterations increases,

the value in the θi will get arbitrarily close to the actual angle of the system, and

the xi register will get arbitrarily close to the actual magnitude of the vector (or to

within a fixed scale factor of the actual magnitude). See References [10] or [11] for a

more detailed explanation of the CORDIC algorithm and variations of it which allow

for other transcendental operations.

The precision of the CORDIC algorithm is of concern for this project, and there

are several important articles that address this issue ([1], [3], and [5]). The angle

measurement can be thought of as the sum of the true measurement and an error

30

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1
α1 = 90◦

α2 = tan−1 2−0 = 45◦

α3 = tan−1 2−1 ≈ 26.5◦

α4 = tan−1 2−2 ≈ 14.04◦

αi = tan−1 2−i+2

xi yi θi
0.2 0.9 0◦

0.9 −0.2 90◦

1.1 0.7 45◦

1.45 0.15 71.56◦

1.4875 −0.2125 85.60◦

1.5141 −0.0266 78.47◦

Figure 2-5: Example of the CORDIC Algorithm Running 5 Iterations.

which is zero mean, uniformly distributed, white∗ noise. The range or endpoints of

the uniformly distributed noise determine the variance, and these endpoints are set

by the number of iterations that are performed in the CORDIC algorithm, and on

the ith iteration it is ±2−i. This looks just like a B fractional bit A/D converter

whose endpoints would be ±2−B, and so the CORDIC algorithm basically produces

as many bits of angle precision as iterations.

The error in the amplitude estimate of the CORDIC is related to the error in the

angle measurement by ea = Ka(1−cos θe), where θe is the error in the angle estimate,

K is the inherent amplitude gain of the CORDIC (which approaches 2.647), and a is

the true amplitude. This can be approximated as ea ≈ Kaθ2e
2
, which shows that if the

angle estimate is uniformly distributed and has a variance of σ2 then the variance of

the amplitude estimate will be 9
5
K2a2σ4. Given that σ ≪ 1, the amplitude estimate

noise power will be less than that of the angle estimate, and so the angle estimate is

the more noisy estimate for a fixed number of iterations. This means we will want to

pick the number of iterations in the CORDIC based on the required precision of the

angle estimate.

∗See Section 3.2.1 for conditions when the CORDIC angle quantization noise can be approximated
as white.

31

The CORDIC algorithm has a tradeoff between precision and the amount of hard-

ware and delay. This tradeoff, however, is probably not significant in most applica-

tions because the Hilbert Transform filter will be the dominant source of area and de-

lay. The CORDIC algorithm requires 3 registers (xi, yi, and θ), an adder/subtracter,

a barrel shifter, 1 small ROM to store each αi, and some control logic. The Hilbert

Transform filter, on the other hand, requires at least one multiplier, a tap delay line,

at least one adder, and some control logic. Tricks can be played so that the Hilbert

Transform filter only requires one multiplier and adder, but even still, when one con-

siders the size of the tap delay line and the multiplier, they will be much larger than

the CORDIC hardware.

The delay of the CORDIC is also of negligible concern when it is compared to

the delay of the Hilbert Transform filter. This assumes that the CORDIC block is

being clocked by a system clock which is much faster than the sampling clock. The

Hilbert Transform delay is always going to be (N−1)/2 sampling clock delays. So, for

example, suppose the Hilbert Transform filter is 51 taps and the sampling frequency is

fs. Then the delay of the Hilbert Transform filter is 25
fs

. Now suppose that the system

clock is 50fs and the CORDIC has 25 iterations, then the delay of the CORDIC

would be 1
2fs

, which is 50 times faster than that of the Hilbert Transform filter.

This means that CORDIC is an efficient algorithm in terms of area and delay when

compared to the Hilbert Transform filter, which indicates that the Hilbert Transform

filter is the place to start when one is optimizing for delay or area since it is the

dominant source of both.

2.5 Implementation Details

There are several design decisions one must make when implementing the Vector

Readout Method. Following is a summary of the constraints that have either been

shown already or will be derived in later chapters. They are listed here as a reference.

Vector Readout Design Rules

32

A/D Sampling Frequency: > 4fc Hz

fc is the carrier frequency of the signal to be demodulated. (See Section 2.2).

A/D Quantization Amount: B fractional bits.

The amount of acceptable A/D quantization is application specific, so here we

say that the signal is quantized to B fractional bits. In Chapters 3 and 5 we find

how this noise propagates through to the amplitude and frequency estimates

so that one can find B for a given SNR, but here we use B to find the widths

of the output registers of the Hilbert Transform and CORDIC block assuming

that one wants to match quantization noise power of these blocks to that of the

A/D converter.

Hilbert Transform Quantization Amount: B fractional bits.

If one implements the Hilbert Transform filter as an all-pass filter approxima-

tion, then the A/D converter noise will go through the filter and have the same

power on the output. Furthermore, if the Hilbert Transform filter is imple-

mented in Direct Form as shown in Figure 2-4, then the quantization of the

Hilbert Transform filter can be localized to the output. This means quantiz-

ing the output to B bits will make the quantization noise power of the Hilbert

Transform filter match that of the A/D converter.

CORDIC Angle Quantization Amount: ⌈B + log2 2πa⌉ fractional bits.

Equation 3.14 in Chapter 3 is the result of a derivation that shows how the A/D

quantization noise propagates through onto the angle estimate, and it follows

from this equation that if the A/D conversion produces a noise signal with

power σ2 then it will cause a noise signal on the normalized† angle estimate

with a power of

σ2
θ =

σ2

4π2a2
,

where a is the amplitude of the signal. The noise power that results on the angle

†The normalized angle estimate is obtained by dividing the angle estimate by 2π. The CORDIC
algorithm inherently does this so that the angle can be thought of as a 2’s complement number
between -1 and 1.

33

estimate when it is quantized to Bθ fractional bits is σ2
θ = 2−2Bθ

12
, so equating

these two and solving for Bθ given that σ2 = 2−2B

12
yields

Bθ = B + log2 2πa. (2.8)

This means that if the amplitude is a = 1, then Bθ = B + 2.65, so the angle

measurement would need three additional fractional bits of precision in order

to match its quantization noise power to that of the A/D converter.

CORDIC Amplitude Quantization Amount: B fractional bits

If the A/D converter introduces quantization noise with power σ2, then Equa-

tion 5.6 in Chapter 5 finds that the mean square error in the amplitude estimate

due to A/D converter quantization is also σ2. This means that the fractional

bit width of the amplitude estimate can match the fractional bit width of the

A/D converter.

CORDIC Iterations: ≥ Bθ

Bθ is the fractional bit width of the angle estimate register. Since the CORDIC

produces 1 bit of angle precision for each iteration, it is most efficient to make

the number of iterations at least match the width of the angle register.

34

Chapter 3

Frequency Demodulation Analysis

It was previously established that the first task in obtaining an estimation of the

acceleration is frequency demodulation, and this chapter analyzes the capabilities of

the Vector Readout method at FM demodulation. Then this method is compared to

other methods of FM demodulation.

3.1 Noise Source Definitions and Metrics

A signal x(t) that is both frequency and amplitude modulated can be expressed as

x(t) = a(t) cos θ(t) (3.1)

where a(t) is the amplitude modulation and θ(t) is the phase modulation. The goal in

FM demodulation is to find the instantaneous frequency, which is the time derivative

of the phase modulation:

ω(t) =
dθ(t)

dt
.

Figure 3-1 shows a block diagram representation of the ideal FM demodulator where

the input is the signal x(t) and the output is the instantaneous frequency ω(t). The

Ideal
FM

Demod

- -
ω(t)x(t)

Figure 3-1: The Ideal FM Demodulator Out-
puts the Instantaneous Frequency.

35

Vector Readout method of FM demodulation can be represented as a combination of

an ideal frequency demodulator and a noise source generator as depicted in Figure 3-

2. Thus, if the noise source is called e(t) and the estimate of the frequency is called

Ideal
FM

Demod

- -
?ω(t)x(t)

��
��
+ -

e(t)

ω̂(t)

FM Demodulator

Figure 3-2: FM Demodulator Repre-
sented as an Ideal FM Demodulator and
a Noise Source.

ω̂(t), then the output of an estimator is

ω̂(t) = ω(t) + e(t).

Because this noise is generated within the demodulator, it will be called the Intrinsic

Noise of the estimator, and this chapter seeks to characterize it for the Vector Readout

method of FM demodulation.

There is another source of noise that is of concern as well. This noise will be called

the Input Noise. It occurs when the signal x(t) is corrupted by an additive noise source

v(t) prior to demodulation as depicted in Figure 3-3. For this accelerometer this noise

��
��

FM
Demod

-+
?

- -

v(t)

x(t) ω̂(t)x̂(t)
Figure 3-3: Input Noise v(t) Corrupts the
Signal Prior to Demodulation.

represents the fact that we cannot measure exactly the position of the oscillator but

can only obtain an estimate of it. For this analysis we consider two cases of Input

Noise, both of which model the actual Input Noise of the accelerometer. One is when

v(t) is a zero-mean, wide-sense stationary random process with variance σ2
v . Since the

position signal will be sent through an anti-aliasing filter prior to being sampled, we

assume that this noise is white over the bandwidth of the A/D converter. This noise

can come from the first gain stage of the analog electronics or from mechanical noise in

36

the sensor. This will be called White Input Noise. The second input noise of interest

will be called Harmonic Input Noise, and it occurs when v(t) is a deterministic sum

of harmonics:

v(t) = a1(t) cos[k1θ(t) + φ1] + a2(t) cos[k2θ(t) + φ2] + · · · (3.2)

The kx’s, ax’s, and φx’s in Equation 3.2 are unrestricted, but it is assumed that the

amplitude of these harmonics is much smaller than the amplitude of the signal to be

demodulated, |a(t)| ≫ |ax(t)|.
For all cases of Input Noise it is desirous to know how the noise propagates through

the demodulator to effect the frequency estimate. Thus, it is helpful to move the input

noise through the demodulator so that it is represented as additive output noise as

shown in Figure 3-4. Therefore, as with the Intrinsic Noise, the effect of the Input

-
x(t)

-
ω(t)

��
��
+
?

e(t)

-
ω̂(t)FM

Demod

Figure 3-4: Input Noise Moved Through the
FM Demodulator To Become Additive Out-
put Noise.

Noise on the frequency estimate can be thought as the sum of the true instantaneous

frequency and an error term:

ω̂(t) = ω(t) + e(t).

With the noise sources defined, we can define the metrics by which the Vector

Readout method of demodulation can be evaluated. The two metrics used here to

characterize the noise e(t) will be mean error, denoted as me, and mean square error,

denoted as λe. The mean error is the time-averaged expected value of the error:

me =
1

2T

∫ T

−T
E[e(t)] dt. (3.3)

37

The mean square error is the time-averaged expected value of the square error:

λe =
1

2T

∫ T

−T
E[e2(t)] dt. (3.4)

If e(t) is periodic, then T can be set to the length of the period to obtain the average,

and if e(t) is not periodic, then the time length T needs to expand all time, so T → ∞.

The function E[·] in the above equations denotes the expected value function,

and if e(t) is deterministic, then it can be removed since it will not effect the result.

On the other hand, if e(t) is a wide-sense stationary random process then the time-

averaging integral can be removed since the mean and mean square error are constant.

Equations 3.3 and 3.4 cover the most general case when the error e(t) is a non-

stationary random process and needs averaged over both time and distribution.

3.2 Vector Readout FM Demodulation Analysis

The Vector Readout method of FM demodulation, as described in Chapter 2, is

shown again in block diagram form in Figure 3-5. The delay block has been removed

to simplify this analysis since it will not effect the mean or mean square error, and

a downsampler has been added as will be explained later. The arctan() function

of the CORDIC block is the only non-linear element in this demodulation method.

Because the noise sources are assumed to be much smaller than the signal to be

demodulated, the arctan() function can be linearized around the error sources to

yield good approximations, and with this linearization, we can consider the error

sources separately and then sum each of their contributions to the mean and mean

square error to produce the final result.

-

-
arctan()

-h[n]

-A/D - ↓M - 1−z−1

Tm

θ̂m[n]
-

6

x̂[n]

ŷ[n]

Hilbert CORDIC

x(t) θ̂[n] ω̂[n]

DerivativeDown
SampleT

Figure 3-5: Block Diagram of Vector Readout Method of FM Demodulation.

38

3.2.1 Intrinsic Noise of Vector Readout Method

There are several intrinsic sources of error within the Vector Readout method as

shown in Figure 3-5. The input signal x(t) in this case is a pure sine wave that is

both frequency and amplitude modulated x(t) = a(t) cos θ(t). Initially we assume this

signal is band limited so that no aliasing occurs in the A/D conversion, and later we

will consider the effects of aliasing∗. In addition we assume that the amplitude of x(t)

is within the range of the A/D converter, that numbers are stored digitally in fixed-

point registers, and that whenever bit widths are given, they represent the number

of fractional bits. With this setup, we are prepared to characterize the intrinsic noise

sources of the Vector Readout method.

A/D Converter Quantization Noise

The first noise source comes from the quantization of the input signal. Here we use

the classic quantization approach and assume that an infinite precision A/D converter

maps the continuous-time input x(t) into a discrete-time signal x[n] so that

x[n] = x(nT) = a[n] cos θ[n],

where T is the sampling rate. Then an additive noise source ex[n] is used to account

for quantization as shown in Figure 3-6. This noise source ex[n] is modeled as a

h?+

ex[n]

-

-
arctan()

-h[n]

- ↓M - 1−z−1

Tm

--A/D

6

- -

x̂[n]

ŷ[n]

Hilbert CORDIC

θ̂[n]

Down
Sample

Derivative

θ̂m[n]

T

Ideal
x[n] ω̂[n]x(t)

Figure 3-6: A/D Quantization Noise Represented as Additive Noise Source

∗See Chapter 2 for a discussion of signal bandwidth and how to avoid aliasing using the Vector
Readout method.

39

zero-mean, white, and uniformly distributed random process with variance

σ2
x =

2−2Bx

12
(3.5)

(where Bx is the number of fractional bits used to store x̂[n]). Therefore, the estimate

of the position signal, which is labeled x̂[n] in Figure 3-6, is

x̂[n] = x[n] + ex[n].

One thing to note is that this noise source looks the same as the White Input Noise

case, so their effects will be the same.

The estimate x̂[n], which is the in-phase estimate, is passed through the Hilbert

Transform filter to produce the quadrature estimate. If we assume the Hilbert Trans-

form filter is an ideal −90◦ phase shifter, then the true in-phase signal x[n] goes

through to produce a perfect quadrature signal y[n] = a[n] sin θ[n]. If the noise ex[n]

goes through to produce an output noise ey[n], then the statistics of ey[n] can be ob-

tained by considering the characteristics of the Hilbert Transform filter. The Hilbert

Transform filter is assumed to be an FIR, anti-symmetric approximation of the ideal

Hilbert Transform filter†. As a result, the unit sample response is an odd function,

as the example Hilbert Transform filter in Figure 3-7 shows. Because the unit sam-

ple response is odd, and because all auto-correlation functions are even, when you

convolve them, the sample at time zero will always be zero. Thus, the correlation

between ex[n] and ey[n], which is simply

Kexey [m] = h[m] ∗Kexex [m], (3.6)

will always be zero for m = 0. This means that samples of the noise in the in-

phase channel are uncorrelated with their corresponding samples of the noise in the

†For simplicity the impulse response of the Hilbert Transform filter in this analysis is centered
at the origin. In reality it is delayed so that the filter is causal. Since the in-phase signal will be
delayed to match the delay of the Hilbert Transform filter, the delay is of no consequence to this
analysis. The effects of the delay may be of concern for the specific application, but it does not
effect the noise statistics.

40

−20 −10 0 10 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

h[
n]

n

Unit Sample Response of Hilbert Transform Filter

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

Normalized Frequency (Ω/π)

|H
(e

jΩ
)|

(d
B

)

Gain Response of Hilbert Transform Filter

Figure 3-7: Unit Sample and Frequency Response of Hilbert Transform Filter.

quadrature channel. It does not mean they are completely uncorrelated, but samples

at the same time are. This fact will be used later in finding the mean and mean

square error of the estimator.

Another property of an FIR Hilbert Transform filter is that it approximates an

all-pass filter. This can be seen in the frequency response of the sample Hilbert

Transform filter shown in Figure 3-7. Because this is the case, the first and second

order statistics of ey[n] will approximately match those of ex[n], including the fact

that σ2
x ≈ σ2

y . With ey[n] characterized, we can express the estimate of the quadrature

signal as the sum of the true quadrature signal y[n] and the filtered noise ey[n],

ŷ[n] = y[n] + ey[n],

and we can move the noise source ex[n] downstream as shown in Figure 3-8. This,

however, is not a complete characterization of ŷ[n] because in reality the Hilbert

Transform filter is not ideal and introduces its own quantization noise, and it has

gain error.

Hilbert Transformer Quantization Noise

The quantization noise of the Hilbert Transform filter can be isolated to a single place

if the filter is implemented in FIR Direct Form (see Reference [7] p.367). When a filter

41

is implemented in Direct Form, all the arithmetic can be done without truncating or

rounding, and it is only the final output which needs rounded if the word length needs

reduced. If the output is rounded to Bh fractional bits, then this quantization can

be represented as an additive noise source which is zero-mean, white, and uniformly

distributed with variance

σ2
h =

2−2Bh

12
(3.7)

as shown in Figure 3-8. Here eh[n] is the Hilbert Transform filter quantization noise

h?+

ex[n]

h
6

+

ey[n] + eh[n]

arctan() - ↓M - 1−z−1

Tm

-
-

--

- -h[n]

-A/D

6

-

CORDIC

θ̂[n]

Down
Sample

Derivative

θ̂m[n] ω̂[n]
x̂[n]

ŷ[n]

Hilbert

y[n]

x[n]

T

Ideal
x(t)

Figure 3-8: Vector Readout FM Demodulation with A/D and Hilbert Transformer Quan-
tization Noise.

source, and so the quadrature signal estimate becomes

ŷ[n] = y[n] + ey[n] + eh[n].

Note that eh[n] is independent of ey[n] and ex[n].

Ripple in the Gain Response of Hilbert Transform Filter

The final effect to consider with the Hilbert Transform filter is that its gain response

has ripple on it. This ripple can be made arbitrarily small by increasing the number

of taps in the filter, but this adds delay which may be of concern. If the optimum or

equiripple FIR filter (see Reference [7] p.486) is used to approximate the ideal Hilbert

Transform filter, then the ripple will be bounded and the gain of the filter over the

bandwidth of interest can be expressed as

∣
∣
∣H(ejΩ)

∣
∣
∣ = 1 + ǫh

42

where ǫh is the ripple. This ripple is not obvious in Figure 3-7 because it is so small,

but in Figure 3-9, the pass band is zoomed to show this ripple. This ripple will have

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Normalized Frequency (Ω/π)

|H
(e

jΩ
)|

 (
dB

)

Gain Response of Hilbert Transform Filter

Figure 3-9: Frequency Response of
Hilbert Transform Filter Showing Rip-
ple in Pass Band.

negligible effects on the statistics of ey[n]. However, it will effect y[n], which is the

true quadrature signal. The result is that our estimate of the quadrature signal is

ŷ[n] = (1 + ǫh)y[n] + ey[n] + eh[n].

These errors fully represent the intrinsic errors on the quadrature signal estimate.

It was shown in Chapter 2 that the phase response of the Hilbert Transform filter is

exactly −90◦, so the quadrature estimate will have no phase error on it.

To summarize, we have characterized x̂[n] and ŷ[n], which are our estimates of

the in-phase and quadrature signals. They are

x̂[n] = a[n] cos θ[n] + ex[n] (3.8)

ŷ[n] = (1+ǫh) a[n] sin θ[n] + ey[n] + eh[n]. (3.9)

Now we are ready to consider how these noise sources propagate through the CORDIC

block and onto the phase estimate.

43

Quantization Noise of CORDIC

As can be seen from Figure 3-5, the in-phase and quadrature estimates are passed

into the CORDIC where it produces an angle estimate. The result is that

θ̂[n] = arctan

(

ŷ[n]

x̂[n]

)

+ ec[n] (3.10)

where ec[n] is the quantization noise of the CORDIC. A rough estimate is that the

CORDIC produces about 1 bit of fractional precision for each iteration. Thus, the

size of ec[n] can be adjusted by changing the number of iterations in the CORDIC,

but its characteristics change drastically depending on how large ec[n] is compared

to the other noise sources on the phase estimate. To see this, consider the case when

the noise on the phase measurement is small compared to the quantization noise of

the CORDIC. When this is the case, the noise is not well represented as a white

random process because it is like sending a saw tooth signal into a A/D converter.

However, when the noise on the phase estimate is on the same order or larger than

the quantization noise of the CORDIC, it helps to mix things up enough so that the

quantization noise looks white. It will generally be desirable that the CORDIC not

be the dominant noise source in the system, so for this analysis we assume that ec[n]

is not large compared to the other noise, so it can be represented as a white, zero

mean, uniformly distributed random process with variance

σ2
c =

2−2N

12
(3.11)

where N is the number of iterations in the CORDIC algorithm.

Noise Propagated Through the CORDIC

Equation 3.10 shows how the in-phase and quadrature estimates get propagated

through the CORDIC. Substituting Equations 3.8 and 3.9 into Equation 3.10 yields

44

that

θ̂[n] = arctan

(

(1+ǫh) a[n] sin θ[n] + ey[n] + eh[n]

a[n] cos θ[n] + ex[n]

)

+ ec[n] (3.12)

This non-linear relation is not easy to work with, but using a first order Taylor Series

expansion of Equation 3.12 to approximate θ̂[n], we obtain

θ̂[n] ≈ θ[n] +
ǫh sin 2θ[n]

2
+

ey[n] + eh[n]

a[n]
cos θ[n] − ex[n]

a[n]
sin θ[n] + ec[n]. (3.13)

In simulations this approximation has proved to be good (which makes sense because

the true in-phase and quadrature signals are the dominant signals), and it is extremely

useful because it enables us to treat the CORDIC block as a linear system with respect

to the error sources. So we define a new noise source eθ[n] which is the sum of all the

noise sources in Equation 3.13:

eθ[n] =
ǫh sin 2θ[n]

2
+

ey[n] + eh[n]

a[n]
cos θ[n] − ex[n]

a[n]
sin θ[n] + ec[n] (3.14)

This allows us to express the phase estimate as θ̂[n] ≈ θ[n] + eθ[n], and so all the

intrinsic noise sources have been moved through the CORDIC as shown in Figure 3-

10.

arctan()

Ideal
CORDIC

h - ↓M - 1−z−1

Tm

-
-

- -h[n]

-A/D

6

- - ?
+

θ̂[n]

Down
Sample

Derivative

θ̂m[n] ω̂[n]
y[n]

x[n]

T

Ideal
x(t)

Hilbert
Ideal

eθ[n] = ǫh sin 2θ[n]
2

+ (ey [n]+eh[n]) cos θ[n]−ex[n] sin θ[n]
a[n]

+ ec[n]

θ[n]

Figure 3-10: A/D Quantization, Hilbert Gain Error, Hilbert Quantization, and CORDIC
Quantization All Represented as Single Additive Phase Error.

45

Noise Propagated Through Downsampler

The downsampler as shown in Figure 3-5 follows the CORDIC, and it reduces the

sampling rate by a factor of M . We define a new sampling time Tm which is

Tm = MT.

The result is that our phase estimate θ̂[n] becomes

θ̂m[n] = θ̂[nM]

= θ[nM] + eθ[nM]

= θm[n] + em[n]

The downsampler will not change the mean or mean square error of the phase esti-

mate, however, it does serve to decorrelate it. This is because the cross-correlation

between ex[n] and ey[n] equals the unit sample response of the Hilbert Transform

filter, as shown by Equation 3.6. So ex[n] and ey[n] become less and less correlated

as the time difference between them increases because the unit sample response of

Hilbert Transform filter (an example of which is shown in Figure 3-7) rolls off and

eventually equals zero. Thus, as M increases, the noise sources on the phase estimate

decorrelate, and so the rest of this analysis will assume that M is large enough so

that all the random processes in eθ[n] can be approximated as an uncorrelated.

Another effect of the downsampler is that if M is large enough then the sinusoidal

terms in Equation 3.13 get aliased. Therefore the high frequency terms get mapped

to low frequency terms, and where they end up will depend on both M and ω[n],

and since ω[n] is moving by design, it is difficult to track where these high frequency

terms will end up when they are aliased. As a result, the rest of this analysis will find

the results under worst case scenarios.

Therefore, we express the error terms of the downsampled phase estimate as

em[n] =
ǫh sin 2ω0n

2
+

ey[n] + eh[n]

a[n]
cosω0n − ex[n]

a[n]
sinω0n + ec[n] (3.15)

46

where ω0 is ω aliased (and θ[n] ≈ ωn). Now it becomes useful to take advantage of

linearity in characterizing each term of em[n] individually. The mean error is zero, and

Table 3.1 summarizes the mean square error for each of the terms in Equation 3.15.

Noise Source
Mean Square
Error (rad)2 Error Characterization

A/D Quantization (ex[n]
and ey[n])

σ2
x

a2

Noise is white and wide-sense sta-
tionary. σ2

x is noise variance of A/D
(Eq 3.5).

Hilbert Filter Quantiza-
tion (eh[n])

σ2
h

2a2

Noise is not wide-sense stationary.
em[n] = eh[n] cosω0n where ω0 is
ω aliased. σ2

h is noise variance of
Hilbert filter quantization (Eq 3.7).

CORDIC Quantization
(ec[n])

σ2
h

Noise is white and wide-sense sta-
tionary. σ2

h is noise variance of
CORDIC quantization (Eq 3.11).

Hilbert Gain Ripple (ǫh)
ǫ2h
8

em[n] = ǫh sinω0n
2

where ω0 is 2ω
aliased.

Table 3.1: Summary of Intrinsic Noise Sources on the Downsampled Estimate of the
Phase.

Differentiator

The output of differentiator as shown in Figure 3-5 is the frequency estimate. It can

be expressed as

ω̂[n] =
θ̂m[n] − θ̂m[n−1]

Tm
(3.16)

If ω[n] is slowly varying compared to the sampling rate Tm, then a good approximation

of the true frequency is

ω[n] ≈ θm[n] − θm[n−1]

Tm
,

and we can write the frequency estimate as the sum of the true frequency and noise‡:

ω̂[n] = ω[n] +
em[n] − em[n−1]

Tm
= ω[n] + eω[n].

‡Here we assume that the differentiation can be performed without any quantization.

47

In characterizing the error in the frequency estimate, it is helpful to realize this

differentiator is an FIR filter with a gain and phase response of

∣
∣
∣H(ejΩ)

∣
∣
∣ =

2

Tm
sin

Ω

2

6 H(ejΩ) =
Ω

2
− π

2
for 0 < Ω < π. (3.17)

So the power spectral density of the wide-sense stationary parts of the error is

Seωeω(ejΩ) =
∣
∣
∣H(ejΩ)

∣
∣
∣

2
Semem(ejΩ)

=
4σ2

m

T 2
m

sin2 Ω

2

=
4

T 2
m

(

σ2
x

a2
+ σ2

c

)

sin2 Ω

2

and substituting in for σ2
x, and σ2

c from Equations 3.5, and 3.11, the the variance

and the power spectral density of the frequency noise estimate due to A/D converter

quantization and CORDIC quantization are:

λe =
4−Bx

6a2T 2
m

+
4−N

6T 2
m

See(e
jΩ) =

1

3T 2
m

(

4−Bx

a2
+ 4−N

)

sin2 Ω

2

These results are summarized in Table 3.2, and they have been verified by simulation

by generating a pure cosine wave (x[n]) and a pure sine wave (y[n]) which were

quantized to 11 fractional bits, passed through an ideal arctan() function, quantized

to match the quantization of an N = 16 CORDIC algorithm, downsampled by 40,

and differentiated according to Equation 3.16. The resultant power spectral density

and calculated power spectral density are shown in Figure 3-11.

The Hilbert Transform filter quantization is not easily characterized since it is not

wide-sense stationary. Using linearity we look at just the Hilbert Transform filter

quantization and set em[n] = eh[n]
a[n]

cosω0n. The differentiator will not change the

mean, but it will double the mean square error since eh[n] is assumed to be white.

48

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

Normalized Frequency (Ω/π)

 S
eω

 e
ω
(e

jΩ
)

(d
B

)

Calculated PSD
Simulated PSD

Figure 3-11: Calculated
and Simulated Power Spec-
tral Density of Noise Due to
A/D and CORDIC Quanti-
zation on the Frequency Es-
timate.

The result is that

eω[n] =
eh[n] cosω0n− eh[n−1] cosω(n−1)

a[n]Tm

λe =
σ2
h

2a2T 2
m

This result has also been verified via simulation and is summarized in Table 3.2.

The last intrinsic error source to consider is the Hilbert gain ripple term of em[n]

of Equation 3.15. We assume em[n] = ǫh sinω0n
2

where ω0 is 2ω aliased, and find how

it effects eω[n]. Using the frequency response of the differentiator as expressed in

Equation 3.17, the error comes

eω[n] =
ǫh
Tm

sin
ω0

2
cosω0

[

n− 1

2

]

.

This has a mean of zero, so me = 0, and the mean square error due to the Hilbert

Transform filter gain ripple is bound by

λe ≤ ǫ2h
2T 2

m

.

These results have also been verified by simulation and are summarized in Table 3.2.

49

Environmental Considerations

The only Intrinsic Noise source that depends on the environment is the A/D converter

quantization noise. Temperature can affect the offset of the A/D converter. Suppose

the offset of the A/D converter is a0, then the in-phase signal estimate becomes

x̂[n] = x[n] + a0. For this application the A/D converter is followed by a digital

bandpass filter to help remove this offset, so it will not be of concern. Without this

bandpass filter, it can be shown that this offset will cause a zero mean error source

on the frequency estimate that has a mean square error that is bound by λe ≤ 2a20
a2T 2

m
.

The gain of the A/D converter is also a function of temperature. This will not effect

the frequency of the signal, though, so it will not have any effects on the acceleration

estimate.

3.2.2 Input Noise Sensitivity

White Input Noise Sensitivity

White noise on the input signal behaves just like the A/D converter quantization noise,

and since the arctan() function performed by the CORDIC algorithm was linearized,

the effects of the white input noise add to those of the Intrinsic Noise Sources. Once

again we assume an input with an amplitude a, and if zero-mean, white noise having

variance σ2
v is added to that input prior to demodulation, then it will result as zero

mean noise on the output having a spectral density of

See(e
jΩ) =

4σ2
v

a2T 2
m

sin2 Ω

2

and a mean square error of

λe =
2σ2

v

a2Tm
.

This was derived in Section 3.2.1.

50

Harmonic Input Noise

To find the effects of harmonic input noise, once again we rely on the linearization of

the arctan() function so that the harmonic input noise can simply be added to the

other results.

After being processed by the Hilbert Transform filter, x̂[n] and ŷ[n] are

x̂[n] = a[n] cos θ[n] + a1[n] cos(k1θ[n]+φ1) + a2[n] cos(k2θ[n]+φ2) + · · ·

ŷ[n] = a[n] sin θ[n] + a1[n] sin(k1θ[n]+φ1) + a2[n] sin(k2θ[n]+φ2) + · · ·

Then θ̂[n] can be found as

θ̂[n] = arctan

(

y[n]

x[n]

)

= arctan

(

a[n] cos θ[n] + a1[n] cos(k1θ[n]+φ1) + a2[n] cos(k2θ[n]+φ2) + · · ·
a[n] sin θ[n] + a1[n] sin(k1θ[n]+φ1) + a2[n] sin(k2θ[n]+φ2) + · · ·

)

This can be Taylor Series expanded about a1, a2, · · · to yield

θ̂[n] ≈ θ[n] +
a1

a
sin((k1−1)θ[n]+φ1) +

a2

a
sin((k2−1)θ[n]+φ2) + · · ·

So

eθ[n] =
a1

a
sin((k1−1)θ[n]+φ1) +

a2

a
sin((k2−1)θ[n]+φ2) + · · · ,

and then it is downsampled by M to produce

em[n] = eθ[nM]

=
a1

a
sin((k1−1)θ[nM]+φ1) +

a2

a
sin((k2−1)θ[nM]+φ2) + · · ·

=
a1

a
sinω1n +

a2

a
sinω2n + · · ·

where the phase terms φx’s have been dropped because they do not affect the averages

and where ω1, ω2, . . . are the aliased frequencies. Because the true frequency ω moves,

it is not easy to track where the harmonics get mapped when they are aliased, so we

51

will once again find the worst case result. When em[n] goes through the digital

differentiator, it becomes

eω[n] =
2a1

aTm
sin

ω1

2
cosω1

[

n−1

2

]

+
2a2

aTm
sin

ω2

2
cosω2

[

n−1

2

]

+ · · ·

Therefore, the mean error of the frequency estimate is

me = 0

and the mean square error is bound by

λe ≤ 2

a2T 2
m

(

a2
1 + a2

2 + · · ·
)

.

Summary

The results of this analysis are summarized in Table 3.2. It reveals that the Vector

Readout method of FM demodulation is capable of a precision FM demodulation

that has no mean error due to either Intrinsic or Input Noise. The mean square

error of the Intrinsic Noise sources can be made arbitrarily small by increasing the

amount of hardware and delay, and the Input Noise sources can also be decreased

significantly if one filters between the A/D converter and the Hilbert Transform fil-

ter. In light of these characteristics and the facts that this method can be efficiently

implemented, that it has no significant temperature dependence, and that it simul-

taneously produces an amplitude demodulation, this method of FM demodulation is

a great candidate for this application.

3.3 FM Demodulation Comparison

It is of interest to know how the Vector Readout method of FM demodulation com-

pares to other methods that could be used. Following is a discussion of some of the

problems associated with using other methods for this application.

52

Noise
Source

Conditions
Mean
Error

Mean Square Error
(rad/s)2 Error Characterization

A/D
Converter

Quantization

Input has amplitude a and
gets quantized to Bx frac-
tional bits.

0
4−Bx

6a2T 2
m

See(e
jΩ) =

4−Bx

3a2T 2
m

sin2 Ω

2

Hilbert
Transform

Quantization

Output register of the
Hilbert filter is quantized to
Bh fractional bits.

0
4−Bh

12a2T 2
m

e[n] = eh[n] cos ω0n−eh[n−1] cos ω0(n−1)
aTm

where ω0 is ω aliased and eh[n] is a Bh

bit quantization noise process. e[n] is
not wide sense stationary.

CORDIC
Quantization

The CORDIC algorithm is
iterated N times.

0
4−N

6T 2
m

See(e
jΩ) =

4−N

3T 2
m

sin2 Ω

2

Hilbert Gain
Error

Gain Response has worse
case gain ripple of ǫh.

0 ≤ ǫ2h
2T 2

m

e[n] =
ǫh
Tm

sin
ω0

2
cos ω0

[

n−1

2

]

where ω0 is 2ω aliased.

A/D Bias
Input has amplitude a and
A/D has an offset a0.

0 ≤ 2a2
0

a2T 2
m

e[n] = − 2a0

aTm
sin

ω0

2
cos ω0

[

n− 1

2

]

where ω0 is ω aliased.

White Input
Noise

Input has amplitude a and
is corrupted with zero-mean
white noise with power σ2.

0
2σ2

a2T 2
m

See(e
jΩ) =

4σ2

a2T 2
m

sin2 Ω

2

Harmonic
Input Noise

Input has amplitude a and
is corrupted with harmon-
ics: a1 cos(k1ωn + φ1) +
a2 cos(k2ωn+ φ2) + · · ·.

0 ≤ 2

a2T 2
m

(

a2
1 + a2

2 + · · ·
)

e[n] =
2

aTm

(

a1 sin
ω1

2
cos ω1n +

+ a2 sin
ω2

2
cos ω2n + · · ·

)

where ωx is (kx−1)ω aliased.

Table 3.2: Summary of Frequency Estimation Errors Using Vector Readout Method for FM Demodulation.

53

Phase-Locked Loop (PLL)

The input into the VCO (Voltage Controlled Oscillator) of a PLL contains the instan-

taneous frequency of the input signal, and this can be used as the FM demodulation.

It is difficult, however, to make the VCO environmentally stable over temperature.

This means that this is not a good method to use to perform a low bandwidth FM

demodulation. In addition, for this accelerometer, the PLL needs to have a wide

bandwidth to allow for the possibly large frequency swings which can result under

extreme accelerations. These frequency shifts will cause dynamics in the FM demod-

ulation as the PLL tries to track the frequency. Furthermore, the ability of the PLL

to track a wide bandwidth signal is inversely related to its ability to reject noise.

Differentiate and Envelope Detect

This method relies on the fact that differentiating a sine wave amplitude modulates

the frequency of the signal onto the signal. Then the frequency can be determined us-

ing an amplitude demodulation method. There are several problems with this method

for this application. First is that differentiation is a high-pass filter, so high-frequency

noise and harmonics get amplified. Second is that it requires a stable amplitude on

the carrier signal, and for this accelerometer, this is not the case under a changing

acceleration as is shown in Chapter 6. Third is that it is not as environmentally stable

as the Vector Readout method in that a changing temperature will change the gain

of both the amplitude signal and the differentiator.

Counter FM Demodulation Analysis

If one counts the zero crossings of the output signal and divides that by the time

it takes to count them, then a first order approximation of the frequency can be

obtained. This, however, requires a high sampling rate for precision since you can

only count to within half a cycle of the carrier. This can be a good method for

extremely low bandwidth signals because the count can be averaged over many cycles

of the carrier and thus reducing the precision issue, but the signal must be of low

54

bandwidth for this to yield useful results.

Arcsine FM Demodulation Analysis

It is possible to improve the Counter method by sampling the output signal at a fixed

rate and taking the arcsin() of the signal. Then adjacent samples can be subtracted

and divided by the change in time to get a first order approximation of the frequency.

In addition, for small values of x, arcsin(x) ≈ x, which makes this technique even

easier. However, this requires a stable amplitude, and the amplitude is temperature

dependent, which makes this method environmentally sensitive.

3.4 Conclusion

The Vector Readout method of FM demodulation is the most logical method to use for

this application since it meets all the desired criteria of being a high-precision, environ-

mentally stable demodulation method. Furthermore, as will be shown in Chapter 5,

the Vector Readout method also yields a high-precision and stable AM demodulation

at the same time as the FM demodulation, and since it requires no additional time

or hardware, this gives the Vector Readout method one additional large advantage

over other methods that could be used. Thus, for all of the above reasons, we chose

to use the Vector Readout for both the FM and AM demodulation method for this

application.

With the FM demodulation method selected and characterized, in the next Chap-

ter we turn to finding the best way to turn the frequency estimate into an acceleration

estimate. We will then use Table 3.2 to pick the bit widths, the amount of tolerable

Hilbert Transform Filter gain ripple, and the amount of tolerable input noise.

55

56

Chapter 4

Mapping Frequency To

Acceleration

In Chapter 1 we saw that the frequency estimate needs mapped to an acceleration

estimate, and in Chapter 3 we characterized the noise of the frequency estimator using

the Vector Readout method. This chapter determines the best method for mapping

the frequency estimate to an acceleration estimate based on the characteristics of the

noise and the sensor.

4.1 Compensation Methods

In Chapter 1 we showed that the oscillator frequency ω and the acceleration g are

related by

mω2 = k1 + kgg, (4.1)

where m is the mass, k1 is the spring stiffness, and kg is the scale factor between

acceleration and spring stiffness. This can be expressed in an alternate form

ω2 = ω2
0 + γg, (4.2)

where ω0 is the zero input frequency and γ is the scale factor from acceleration to

square frequency. Under this first order model if γ, ω0, and ω are known exactly, then

57

we can obtain an exact estimate of the true acceleration g by building a compensator

that takes in γ, ω0, and ω and returns g according the relation obtained by solving

Equation 4.2 for g.

In reality, though, obtaining an acceleration estimate is much more difficult for

several reasons. One is that the relationship between the oscillation frequency and

acceleration is determined by a very complicated mechanical and electrical system

and is not completely captured by the first order model of Equation 4.2. Another is

that we do not know the parameters ω0 and γ exactly and if they change over time

we have no way of estimating or knowing it. Lastly, we do not know the oscillation

frequency ω exactly but only have an estimate of it which is obtained via frequency

demodulation and is corrupted with noise.

Thus, a good method of turning the frequency estimate into an acceleration esti-

mate needs developed. For the Vibratory Accelerometer, the compensator that turns

the frequency estimate into an acceleration estimate will be a polynomial function

which is parameterized in a calibration step. This calibration step will be performed

individually on each accelerometer and involves stepping each accelerometer through

known acceleration levels while obtaining and averaging the resultant frequency esti-

mates for each step. Then coefficients from a least-squares polynomial curve fit can

be obtained which map the acquired average frequency estimates back to the known

acceleration levels, and these coefficients can then be set in each accelerometer. Thus

the compensator is a generic polynomial function f(ω) of the form

ĝ = f(ω̂) = ν0 + ν1ω̂ + ν2ω̂
2 + · · · + νN ω̂

N ,

where the ν terms are determined for each accelerometer via calibration, ω̂ is the fre-

quency estimate, N is the order of the compensator and is set by hardware constraints

and precision limitations, and ĝ is the acceleration estimate.

This method of compensation is good in that it can capture higher order rela-

tions between the frequency and acceleration not captured by Equation 4.2, but its

limitation is that it assumes that g is the only changing variable that effects the fre-

58

quency. If ω0, γ, or higher order parameters relating frequency and acceleration (such

as oscillation amplitude) change over time then errors will result in the g estimate.

Furthermore, this method assumes that the mean frequency estimate over a given g

level captures the complete frequency estimate, and therefore the higher order noise

characteristics are neglected. If these are not dealt with they can have undesirable

effects as will be shown later.

The compensation procedure, however, is actually more complicated than pre-

viously stated, and the reason is that the Vibratory Accelerometer produces two

frequency estimates as a differential signal and the acceleration estimate needs to be

a single signal. As a result, the compensation can be performed in different places

depending on when and how this differential signal is collapsed into a single signal.

Figure 4-1 shows three different topologies which could be used to turn the differential

frequency estimate into a single acceleration estimate, and following is a description

of each method.

Frequency DifferenceAcceleration Difference Weighted Difference

∆ ∆ ∆�
��

�

JĴ
-ĝ

ĝa/2

−ĝb/2

-ĝ�
��

-

�

JĴ
Comp

ω̂b

ω̂a

∆ω̂
Comp -ĝ�

��

-

-

Comp

Comp

-

�

JĴ
Comp

ca

cb

-

-
ω̂b

ω̂a

∆ω̂

ω̂b

ω̂a

Figure 4-1: Different Compensation Methods

Acceleration Difference: This method obtains the differential acceleration esti-

mates and then subtracts them to obtain a single acceleration estimate. This

requires compensating both channels of the differential frequency signal.

Frequency Difference: This method subtracts the frequency estimates first to col-

lapse the differential signal into a single signal and then compensates to obtain

the acceleration estimate. This requires a single compensator.

Weighted Difference: Since the zero-input frequencies of each channel are sepa-

rated to avoid frequency locking problems, it is possible to weight each frequency

59

estimate prior to differencing. The weights are chosen so that the differenced

signal ∆ω̂ is zero whenever the input g is zero.

4.1.1 First Order Compensators

In order to evaluate which compensation method to use, we must fix the compensator

coefficients (which will be fixed in real life via calibration) and then we can see how

sensitive each method is to the drawbacks listed earlier. In order to determine and

fix the compensator coefficients, we assume that the first order model of Equation 4.2

is exact so that the frequency and acceleration relationship for each channel is

ω2
a = ω2

0a + γg (4.3)

ω2
b = ω2

0b − (1+ǫ)γg, (4.4)

where the a and b subscripts denote channel A and channel B parameters and ǫ

represents the difference in scale factor which will exist between the two channels (to

ease the algebra in the future we will define and use ǫ1 = 1+ǫ and ǫ2 = 2+ǫ). We

then assume that ω0a, ω0b, ǫ, and γ do not change over time and that we can measure

ωa and ωb exactly (no noise on the frequency estimates). Under these conditions,

we can determine exactly the coefficients that would be obtained via calibration by

solving the frequency and acceleration relations of Equations 4.3 and 4.4 under the

constraints imposed by each of the three compensation methods. There are two

reasons why these coefficients, which will be called the First Order Coefficients, are

good approximations to the coefficients that will be obtained in reality when the

accelerometer is calibrated. One is that the relations of Equations 4.3 and 4.4 are

good approximations of the true system, and the other is the frequency estimate has

a zero mean error. Thus we turn to finding the First Order Coefficients for the three

compensation methods.

60

Acceleration Difference First Order Coefficients

The individual frequency estimates for each channel can be found by solving Equa-

tions 4.3 and 4.4 for g, which is

ga =
ω2
a − ω2

0a

γ

−gb =
ω2
b − ω2

0b

γǫ1
.

So the compensator coefficients for each channel are

ν0a = −ω2
0a/γ ν0b = −ω2

0b/γǫ1

ν1a = 0 ν1b = 0

ν2a = 1/γ ν2b = 1/γǫ1

ν3a = 0 ν3b = 0
...

...
...

...

Frequency Difference First Order Coefficients

This method of compensation first subtracts the frequency estimates of each channel

and then finds the resulting acceleration measurement. Mathematically, the frequency

difference is

∆ω = ωa − ωb

=
√

ω2
0a + γg −

√

ω2
0b − ǫ1γg.

Solving this for g and defining Γ = ǫ2(ω
2
0aǫ1 + ω2

0b) yields

g =
ǫ2(ω

2
0b − ω2

0a) + 2∆ω
√

Γ − ǫ1∆ω
2 − ǫ∆ω2

γǫ22
.

61

So Taylor Series expanding this about ∆ω gives the first order coefficients as

ν0 =
ω2

0b−ω2
0a

γǫ2
ν5 =

−ǫ21Γ−3/2

4γǫ22

ν1 = 2Γ1/2

γǫ22
ν6 = 0

ν2 = −ǫ
γǫ22

ν7 =
−ǫ31Γ−5/2

8γǫ22

ν3 =
−ǫ1Γ−1/2

γǫ22
ν8 = 0

ν4 = 0
...

...

Weighted Difference First Order Coefficients

This compensation method is similar to the Frequency Difference method except

that it weights the frequency estimates before subtracting them. These weights are

selected so that ∆ω = 0 for g = 0. Mathematically, this is

∆ω = caωa − cbωb

caω0a − cbω0b = 0.

If we define ω0 = caω0a = cbω0b, then the frequency difference can be expressed as∗

∆ω = ω0

√

1 +
γ

ω2
0a

g − ω0

√

1 − γ

ω2
0b

g.

So we see that weighting the frequencies has the effect of giving both channels the

same zero-input frequency and of giving them different scale factors. Solving for g to

obtain an estimate of the acceleration yields

g =
2ω2

0aω
2
0b∆ω

√

ω2
0(ω

2
0a + ω2

0b)
2 − ω2

0aω
2
0b∆ω

2 + ω2
0aω

2
0b(ω

2
0b − ω2

0a)∆ω
2

γω2
0(ω

2
0a + ω2

0b)
2

∗ǫ has been dropped because it can be absorbed into ωob.

62

Taylor Series expanding this about ∆ω yields the first order coefficients

ν0 = 0 ν5 =
−ω6

0aω
6
0b

4γω5
0(ω2

0a+ω2
0b

)5

ν1 =
2ω2

0aω
2
0b

γω0(ω2
0a+ω2

0b
)

ν6 = 0

ν2 =
ω2

0aω
2
0b(ω

2
0b−ω2

0a)

γω2
0(ω2

0a+ω2
0b

)2
ν7 =

−ω8
0aω

8
0b

8γω7
0(ω2

0a+ω2
0b

)7

ν3 =
−ω4

0aω
4
0b

γω3
0(ω2

0a+ω2
0b

)3
ν8 = 0

ν4 = 0
...

...

4.1.2 Spring Stiffness Variation

With the first order coefficients defined for the three compensation methods, we turn

to evaluating each method to various types of parameter variation. We start by

considering spring stiffness variation by supposing that after calibrating, the zero

input spring stiffness changes such that

mω2
a = k1a + k1 + kgg (4.5)

mω2
b = k1b ± k1 − ǫ1kgg. (4.6)

where k1 is the change in spring stiffness such that when the ± sign in Equation 4.6

is ’+’ it corresponds to a common mode spring stiffness change and when it is ’−’

it corresponds to differential mode change. By defining ω2
1 = k1/m, Equations 4.5

and 4.6 can be expressed as

ω2
a = ω2

0a + ω2
1 + γg (4.7)

ω2
b = ω2

0b ± ω2
1 − ǫ1γg. (4.8)

This changing spring stiffness results in a new zero input frequency which is
√

ω2
0a + ω2

1

for channel A and
√

ω2
0b ± ω2

1 for channel B. Solving Equations 4.7 and 4.8 for ωa and

ωb enables us to send the new constraints imposed by the spring stiffness variation

through the compensators to see how each one handles it. The results are summarized

in Table 4.1 where they have been approximated when necessary by Taylor Series

63

Acceleration Estimate With Spring Stiffness Variation
Common Mode Differential Mode

Acceleration Difference g +
k1ǫ

2kgǫ1
g +

k1

kg

Frequency Difference g +
k1(ω0b − ω0a)

kg(ω0b + ω0a)
g +

k1

kg

Weighted Difference g +
k1(ω

2
0b − ω2

0a)

kg(ω2
0b + ω2

0a)
g +

k1

kg

Table 4.1: Summary of Spring Stiffness Variation Results.

expanding about g and k1.

The results of Table 4.1 show that both a common and differential mode change

spring stiffness results in a bias on the acceleration estimate. In Figure 4-2 the bias

resulting from a common mode spring stiffness change is plotted using the nominal

0 1 2 3
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
Matched Oscillators

A
cc

el
er

at
io

n
B

ia
s

(µ
g)

Common Mode Zero Input Frequency Variation (mHz)

Acceleration Difference
Frequency Difference
Weighted Difference

0 1 2 3
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
10% Mismatch (ε = 0.1)

Figure 4-2: Spring Stiffness Common Mode Variation with Matched Parameters.

64

values† of the VA for the cases when the oscillators are matched (ǫ = 0) and when they

are matched to 10% (ǫ = 0.1). The zero input frequency variation
(√

ω2
0a + ω2

1 − ω0a

)

is plotted on the x-axis. Notice that the Acceleration Difference method is the only

compensation method that is sensitive to mismatches, thus the Acceleration Differ-

ence method is the only method that will perform better as the sensor is built better.

Note that for the Weighted Difference method if the zero input frequency drifts in

a common mode by 2 mHz it will cause a 1 µg bias. On the other hand, the Fre-

quency Difference method can tolerate a drift of about 3.5 mHz before a 1 µg bias

results. Notice that all three methods have approximately the same Differential Mode

sensitivity and that it is not related to how well the oscillators are matched.

4.1.3 Sampling Clock Drift

Suppose the sampling clock drifts after calibration such that the sampling time be-

comes T ′ = (1+τ)T where T is the sampling time used during calibration. Since the

frequency estimate is generated using this clock as a reference, the frequency estimate

from each channel will also change proportionally to (1+τ) so that ω̂′ = (1+τ)ω̂.

If g = 0 then sending these frequency estimates into each compensator results in a

bias in the acceleration estimate. The resulting acceleration bias for each method is

listed in Table 4.2. The corresponding figure shows that if the Acceleration Difference

method is used to compensate then the clock must be held with 100 ppb in order that

the acceleration bias not exceed 1 µg. The Weighted Difference method is clearly the

least sensitive to clock drift in that it causes no bias error.

†The nominal values used throughout this analysis are ω0a = 2π · 20, 000 rad/s, ω0b = 2π ·
19, 000 rad/s. The scale factor for the channel A is assumed to be 100 Hz/g, and this makes
γ = 157.9 × 106 rad2/s2/g.

65

Acceleration
Difference

τ(ω2
0a − ω2

0b)

γǫ1

Frequency
Difference

2τω0aω0b(ω0a − ω0b)

γ(ω0a + ω0b)

Weighted
Difference

0

Table 4.2: Acceleration Bias Resulting From
Sampling Clock Drift.

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

el
er

at
io

n
B

ia
s

(µ
g)

Clock Drift (ppb) (109τ)

Acceleration Difference
Frequency Difference
Weighted Difference

4.1.4 Noisy Frequency Estimates

Suppose that the frequency estimates from each channel are corrupted with noise

such that

ω̂a[n] = ωa[n] + eωa[n] (4.9)

ω̂b[n] = ωb[n] + eωb[n] (4.10)

where eωa [n] and eωb
[n] are zero-mean random processes with auto-covariance func-

tions Rωaωa [m] and Rωbωb
[m] and variances σ2

a and σ2
b . We now turn to see how this

noise effects the acceleration estimate and the velocity estimate (which will be ob-

tained by integrating the acceleration estimate). The two metrics used to compare

the compensation methods are bias on the acceleration estimate and random walk on

the velocity estimate.

To do this, we first find the error on the acceleration estimate to second order for

each compensation method. Using Taylor Series expansions and setting g = 0, we

find:

Acceleration Difference Acceleration Estimation Error:

eg[n] ≈ 1

γ

(

ω0aeωa [n] − ω0beωb
[n]

1

ǫ1

)

+
1

2γ

(

e2ωa
[n] − e2ωb

[n]
1

ǫ1

)

(4.11)

66

Frequency Difference Acceleration Estimation Error:

eg[n] ≈ 2ω0aω0b

γ(ω0aǫ1 + ω0b)
(eωa [n] − eωb

[n]) +
ω3

0b − ω3
0aǫ

2
1

γ(ω0aǫ1 + ω0b)
3
(eωa [n] − eωb

[n])2

(4.12)

Weighted Difference Acceleration Estimation Error:

eg[n] ≈ 2ω0aω0b

γ(ω2
0a + ω2

0b)
(ω0beωa [n]−ω0aeωb

[n]) +
ω2

0b − ω2
0a

γ(ω2
0b + ω2

0a)
2
(ω0beωa [n]−ω0aeωb

[n])2

(4.13)

Acceleration Bias Comparison and Sensitivity

From Equations 4.11, 4.12, and 4.13 it is straight forward to find the mean error, and

they are listed and compared in Table 4.3 and Figure 4-3. These show that if the

noise characteristics of eωa [n] and eωb
[n] are constant then a fixed bias can result in

the acceleration estimate. A fixed bias, however, is not of concern because it can be

corrected either by adjusting the coefficients of the compensator to have an equivalent

second stage or by making the application correct for it. If the noise characteristics

of eωa [n] and eωb
[n] change after calibration, however, the resulting change in bias

cannot be corrected. Thus in Table 4.3 and Figure 4-3 the common and differential

mode bias sensitivity are presented. These are defined by considering the effects when

the noise power of eωa [n] and eωb
[n] move commonly and differentially. Suppose the

noise power in channel A becomes σ2
a + σ2 and noise power in channel B becomes

σ2
b + σ2. These changes will change the mean error of the acceleration estimate me,

and the Common Mode Bias Sensitivity is defined as
∣
∣
∣
dme

dσ2

∣
∣
∣ and tells how sensitive

the bias is to common mode changes in the noise power. The Differential Mode Bias

Sensitivity is defined similarly except the noise power changes differentially.

In Table 4-3 and Figure 4-3 nominal values for the VA and a mismatch of 10% (ǫ =

±0.1) are used to provide actual worst-case scenario numbers for the bias sensitivities.

Notice that for the common mode case both Acceleration Difference and Frequency

Difference compensation methods are sensitive to the matching between channels

while the Weighted Difference is not, and with a 10% mismatch, all three methods

67

Acceleration
Difference

Frequency
Difference

Weighted
Difference

Bias
Description

1

2γ

[

σ2
a − σ2

b

1

ǫ1

]
(σ2
a + σ2

b)(ω
3
0b − ω3

0aǫ
2
1)

γ(ω0b + ω0aǫ1)
3

(ω2
0bσ

2
a + ω2

0aσ
2
b)(ω

2
0b − ω2

0a)

γ(ω2
0b + ω2

0a)
2

Matched
Bias (ǫ1 = 1,

σ2 = σ2
a = σ2

b
)

0 0
2σ2(ω3

0b
− ω3

0a)

γ(ω
0b

+ ω0a)3
−2.4×10−10σ2 σ2(ω2

0b
− ω2

0a)

γ(ω2
0b

+ ω2
0a)

−3.2×10−10σ2

Common
Mode Bias
Sensitivity

ǫ

2γ

1.25×10−8
(

g
Hz2

) 2(ω3
0b − ω3

0aǫ
2
1)

γ(ω
0b

+ ω0aǫ1)
3

2.0×10−8
(

g
Hz2

) ω2
0b − ω2

0a

γ(ω2
0b

+ ω2
0a)

1.3×10−8
(

g
Hz2

)

Differential
Mode Bias
Sensitivity

1

γ

2.5×10−7
(

g
Hz2

)
0 0

(ω2
0b

− ω2
0a)2

γ(ω2
0b

+ ω2
0a)2

6.5×10−10
(

g
Hz2

)

Table 4.3: Comparison of Acceleration Estimation Bias under different compensation
methods when the frequency estimates from each channel are corrupted with zero-mean
noise having power σ2

a and σ2
b . The nominal values of the VA and an assumed 10%

mismatch (ǫ = ±0.1) are used to provide actual numbers for worst-case bias sensitivities.

0 5 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

RMS Frequency Noise (Hz)

A
cc

el
er

at
io

n
B

ia
s

(µ
g)

Common Mode

Acceleration Difference
Frequency Difference
Weighted Difference

0 5 10
−5

0

5

10

15

20

25

RMS Frequency Noise (Hz)

A
cc

el
er

at
io

n
B

ia
s

(µ
g)

Differential Mode

Figure 4-3: Acceleration Bias resulting from common and differential mode frequency
noise power changes.

68

have comparable common mode bias sensitivity. Also notice that both the Frequency

Difference and Weighted Difference have very similar differential mode bias sensitivity

while the Acceleration Difference is orders of magnitude worse.

Random Walk

In most applications the acceleration estimate will be integrated to obtain a velocity

estimate. This integration can result in random walk in the velocity estimate—

meaning that the variance of the velocity estimate error grows as a function of time.

If the acceleration estimate is integrated with a first order discrete integrator, the

error in the velocity estimate will be

ev[n] = T
n∑

i=0

eg[i].

This has a variance of

σ2
v [n] = nT 2Rgg[0] + 2T 2

n−1∑

i=0

(n−i)Rgg[i], (4.14)

and if this grows as a function of time, then the velocity estimate is said to have a

random walk.

For this application, the nature of the velocity estimate random walk depends on

the nature of the acceleration estimation noise, and this depends on the both the

method of demodulation and the method of compensation. Here we are concerned

with choosing which compensator results in the smallest amount of random walk, and

to do this we consider two different types of noise. One is when the noise on the fre-

quency estimates are zero-mean, white, uncorrelated random processes, and the other

is when they are differentiated zero-mean, white, uncorrelated random processes.

When eωa [n] and eωb
[n] are zero-mean, white, uncorrelated random processes with

variances of σ2
a and σ2

b , then eg[n] will also be white. If the variance of eg[n] is σ2
g ,

then from Equation 4.14 the variance of the velocity estimation error is

σ2
v [n] = nT 2σ2

g .

69

The value of σ2
g depends on the method of compensation and can be approximated

well by the linear terms of Equations 4.11, 4.12, and 4.13, and the resulting value

of σ2
v [n] for each method is presented in Table 4.4. The random walk column of

Velocity Variance σ2
v [n] Random Walk

Acceleration
Difference

nT 2

γ2

(

ω2
0aσ

2
a + ω2

0bσ
2
b

)

4.9673× 10−4
√
t ft/s

Frequency
Difference

nT 2

γ2

[

2ω0aω0b

ω0a + ω0b

]2

(σ2
a + σ2

b) 4.9624× 10−4
√
t ft/s

Weighted
Difference

nT 2

γ2

[

2ω0aω0b

ω2
0a + ω2

0b

]2

(ω2
0bσ

2
a + ω2

0aσ
2
b) 4.9607× 10−4

√
t ft/s

Table 4.4: Variance and random walk of velocity estimate due to white frequency noise.
The values in the random walk column assume σ2

a = σ2
b = 1 rad2/s2, T = 200 µs, and

nominal VA values.

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

R
M

S
 V

el
oc

ity
 E

rr
or

 (
10

3 ft/
s)

Acceleration Difference

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

Frequency Difference

0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

Weighted Difference

Simulated
Calculated

Figure 4-4: White Noise Random Walk

Table 4.4 was determined using the nominal values of the Vibratory Accelerometer.

These results have been simulated and are shown in Figure 4-4. These simulated

results were obtained by creating 2 seconds of white Gaussian noise of unity variance

(rad2/sec2) to represent eωa [n] and eωb
[n]. The noise was added to an ideal frequency

70

estimate and sent through each compensator. The resulting acceleration estimate was

integrated. This sample path was then saved and more sample paths were generated

in a similar way. Then the corresponding samples were squared, averaged, and square-

rooted to produce the simulated random walk lines shown in Figure 4-4 where 1000

sample paths are averaged. The results of Table 4.4 and Figure 4-4 show that for the

nominal values of the VA, the method of compensation does not significantly effect

the amount of the random walk, thus any method is as good as the others.

When the noise on the frequency estimate, however, is differentiated white noise,

then the results are quite different. To do this analysis we make the approximation

that eωa [n] and eωb
[n] are Gaussian. This approximation is justified by the Central

Limit Theorem in that the frequency noise for the VA is the sum of many independent

noise sources and thus approaches Gaussian conditions. This means we can use the

relation that if x[n] is a zero-mean Gaussian random process with auto-covariance

Rxx[m] and y[n] = x2[n], then

Ryy[n,m] = E(x2[n]x2[m]) − E(x2[n])E(x2[m])

= σ4
x + 2R2

xx[n,m] − σ4
x

Ryy[m] = 2R2
xx[m] (4.15)

Furthermore, if the differentiation is a single order discrete filter, then the variance

can be expressed as

σ2
v [n] =

(

n+
1

2

)

T 2Rgg[0] + 2nT 2Rgg[1].

Therefore, with these relations and the error sources of Equations 4.11, 4.12, and 4.13,

σ2
v [n] can be found for each compensation method and is expressed in Table 4.5. The

second order approximations of Equations 4.12 and 4.13 did not prove sufficient in

simulations in capturing the random walk, and so Table 4.5 actually provides the

results to a third order error expansion. Once again this result was simulated and is

plotted in Figure 4-5. From this figure it is obvious that the Acceleration Difference

71

Velocity Variance σ2
v [n] Random Walk

Acceleration
Difference

3nT 2

4γ2

(

σ4
a + σ4

b

)

+
T 2

2γ2

(

ω2
0aσ

2
a + ω2

0bσ
2
b

)

0.1751
√
t ft/s

Frequency
Difference

9nT 2

2γ2

[
(ω2

0a+ω2
0b

)2

(ω0a+ω0b)5

]2

(σ2
a + σ2

b)
3 +

3nT 2

γ2

[
ω3

0b−ω3
0a

(ω0a+ω
0b

)3

]2

(σ2
a + σ2

b)
2 +

T 2

γ2

[

2ω0aω0b

ω0a+ω
0b

]2

(σ2
a + σ2

b)

0.0115
√
t ft/s

Weighted
Difference

9nT 2

2γ2

[

ω0aω0b

(ω2
0a+ω2

0b
)3

]2

(ω2
0bσ

2
a + ω2

0aσ
2
b)

3 +

3nT 2

γ2

[
ω2

0b
−ω2

0a

(ω2
0b

+ω2
0a)2

]2

(ω2
0bσ

2
a + ω2

0aσ
2
b)

2 +

T 2

γ2

[

2ω0aω0b

ω2
0a+ω2

0b

]2

(ω2
0bσ

2
a + ω2

0aσ
2
b)

0.0143
√
t ft/s

Table 4.5: Variance and random walk of velocity estimate due to differentiated white

frequency noise. The values in the random walk column assume σ2
a = σ2

b =
2/T 2 rad2/s2, T = 200 µs, and nominal VA values.

0 1 2
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

R
M

S
 V

el
oc

ity
 E

rr
or

 (
ft/

s)

Acceleration Difference

0 1 2
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

Frequency Difference

0 1 2
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

Weighted Difference

Simulated
Calculated

Figure 4-5: Differentiated White Noise Random Walk

has a dramatically worse random walk. The reason is that the second order term in

the error in Equations 4.11, 4.12, and 4.13 is what gives rise the random walk when

72

the noise is differentiated, and the second order term is considerably larger in the

Acceleration Difference method.

4.1.5 Compensation Method Selection

Given the above analysis, the method of compensation which is the best for the

Vibratory Accelerometer is the Weighted Difference method. While the other methods

have the better common mode spring stiffness variation tolerance, it is equal to or

better than the others in all the other areas. It matches the others in differential spring

stiffness variation, it has zero sensitivity to sampling clock drift, it is almost equal to

the other methods in terms of common mode noise power sensitivity and random walk

from white frequency noise, it has very small differential mode noise power sensitivity,

and it has an order of magnitude less random walk from differentiated white frequency

noise.

Notice that this analysis does not suggest an optimum weighted zero input fre-

quency ω0. Thus, it can be set at a value which allows the smallest quantization

error.

4.1.6 Parameter Selection

With the frequency demodulation selected to be the Vector Readout method and the

compensation method selected to be the Weighted Difference method, we are in a

position to pick some of the design parameters.

A/D Converter Bit Width

The A/D converter bit width was selected to be 12 bits. This makes it several orders

of magnitude lower in noise power than the white noise on the position signal due to

the analog gain stage which precedes the A/D converter. A 12 bit converter is not

too aggressive to build, and it does not result in registers that are too large for the

amount of available gates. Therefore, it is a reasonable bit width.

73

Sampling Rate

Table 3.2 shows that in order to reduce the noise power on the frequency estimate

we must reduce the sampling rate. On the other hand, we know from Chapter 2

that we cannot reduce the sampling rate less than 4 times the carrier frequency or

else aliasing can occur. For this application the nominal carrier frequency is 20 kHz,

which means that we do not want to sample below 80 kHz. We chose to sample at 200

kHz so that we did not have to implement an aggressive anti-aliasing filter. Instead

we over sample a little and then use a digital filter to attenuate the harmonics and

out of band noise. A digital filter is much easier to make stable over environmental

conditions.

After converting the signal into phase, we downsample as was discussed in Chap-

ter 3. This lower sampling rate can be as low as the carrier frequency since the

demodulation has occurred and all the signal information must be below the carrier

frequency. Once again it is advantageous to sample as slow as possible to reduce noise

power and increase frequency estimate resolution. We chose to sample at 5 kHz here.

This is 4 times lower than the bandwidth of our carrier, so it is possible that if the

phase modulation has bandwidth above 5 kHz that it will get aliased, but for this

application we are constraining the signal to have a bandwidth below 5 kHz.

74

Chapter 5

Amplitude Demodulation Analysis

In Chapter 1 it was established that the controller of the Vibratory Accelerometer

needs an estimate of the amplitude in order to control it, and so this chapter presents

an analysis of the amplitude demodulation ability of the Vector Readout method.

This chapter will parallel Chapter 3 in that it will characterize the Intrinsic Noise of

the method as well as characterize how Input Noise propagates through the system.

This chapter also compares the Vector Readout method to other methods that could

have been used to AM demodulate.

5.1 Noise Source Definitions

Given a signal that is both frequency and amplitude modulated

x(t) = a(t) cos θ(t),

the goal in AM demodulation is to find the instantaneous amplitude, which is a(t),

as shown in Figure 5-1. Just as with FM demodulators, AM demodulators produce

estimates of a(t) which are corrupted with the both the Intrinsic Noise and the Input

Ideal
AM

Demod

- -
a(t)x(t)

Figure 5-1: The Ideal AM Demodulator Out-
puts the Instantaneous Amplitude.

75

Noise of the demodulator (see Section 3.1 for a detailed explanation of Intrinsic and

Input Noise). For this analysis we consider the same two cases of Input Noise—White

Input Noise and Harmonic Input Noise. Thus, we seek to characterize the error e(t)

in the estimate of amplitude, which can be expressed as

â(t) = a(t) + e(t).

The metrics used to characterize the ability of the Vector Readout method to

AM demodulate will be the same as those used for FM demodulation as defined in

Section 3.1, namely the mean error me and mean square error λe.

5.2 Vector Readout AM Demodulation Analysis

The Vector Readout method of amplitude demodulation is described in Chapter 2

and is shown in block diagram form in Figure 5-2. The square root function of

-

- -h[n]

-A/D

6

K
√
x2 + y2 -

x[n]

y[n]

Hilbert CORDIC

x(t)

T

â[n]

Figure 5-2: Amplitude Demodulation Using Vector Readout method

the CORDIC block is the only non-linear element of concern in the demodulation

method, and because the noise sources are small compared to the signal, the square

root function can be linearized around the error sources to yield good approximations.

This allows us to consider each noise source individually and then add up the results

to obtain the final error.

76

5.2.1 Intrinsic Noise

A/D, Hilbert, and CORDIC Quantization and Hilbert Gain Error

It was shown in Section 3.2.1 that the in-phase and quadrature estimates due to the

A/D converter quantization are

x̂[n] = a[n] cos θ[n] + ex[n] (5.1)

ŷ[n] = (1+ǫh) a[n] sin θ[n] + ey[n] + eh[n]. (5.2)

Furthermore, the CORDIC output is

â[n] =
√

x̂2[n] + ŷ2[n] + ec[n] (5.3)

where ec[n] is the quantization noise of the CORDIC. So plugging Equations 5.1

and 5.2 into Equation 5.3 gives

â[n] =
√

((1 + ǫh)a[n] sin θ[n] + ey[n] + eh[n])2 + (a[n] cos θ[n] + ex[n])2 + ec[n].

If we linearize this it becomes

â[n] ≈ a[n] + ǫha[n] sin2 θ[n] + (eh[n] + ey[n]) sin θ[n] + ex[n] cos θ[n] + ec[n]. (5.4)

So to first order, the mean error will be me = ǫha[n]
2

. If we take a second order

expansion, the cross terms between all the noise sources will have a mean of zero

because they are uncorrelated. However, the squared terms are not zero mean, and

they add to the mean as follows

me =
ǫha

2
+

2σ2
x + σ2

h

4a
. (5.5)

Thus, the gain error of the Hilbert Transform filter ǫh, which causes a signal at 2ω

on the amplitude estimate, causes a first order bias that depends on the frequency

(remember that ǫh is a function of the frequency), but since errors that are a func-

77

tion of frequency can be calibrated out (see Chapter 4), this is not a problem for

our application. In addition, Equation 5.5 shows that the quantization of the A/D

converter and the Hilbert Transform filter quantization cause a second order bias on

the amplitude estimate. This bias is also of little concern for this application since it

will be a fixed bias over all frequencies and thus will be calibrated out.

The mean square error of the amplitude estimate due to Intrinsic Noise can be

found from Equation 5.4, and it is

λe =
3

8
ǫ2ha

2 + σ2
x +

1

2
σ2
h (5.6)

We will see in more detail in Chapter 6 how these noise sources propagate through

the closed-loop system to effect the acceleration estimate.

Environmental Stability

The only environmentally sensitive element in the Vector Readout method of ampli-

tude demodulation is the A/D converter. The A/D converter will have an offset that

is temperature dependent. For our application, however, a bandpass filter between

the A/D converter and the Hilbert Transform filter will remove this offset, so it will

not be of concern.

The gain of the A/D converter will also change as a function of the temperature,

and this will feed right through onto the amplitude estimate. The sensitivity of the

A/D converter to temperature will largely be a function of the sensitivity of the

voltage reference to temperature. So if the reference is stable over temperature, then

this method can also be stable over temperature.

5.2.2 Input Noise

It is of interest to know how the Vector Readout method of AM demodulation handles

an input signal that is corrupted with additive noise.

78

White Input Noise

When the position signal is corrupted with additive white noise with power σ2, it

behaves exactly the same as the A/D converter quantization noise, so it produces a

second order mean error in the amplitude estimate:

me =
σ2

2a
.

The mean square error is unaffected by the system, so it is

λe = σ2.

Harmonics Input Noise

When the input is corrupted with harmonics as given in Equation 3.2, then the in-

phase and quadrature estimates will be

x̂[n] = a[n] cos θ[n] + a1[n] cos(k1θ[n]+φ1) + a2[n] cos(k2θ[n]+φ2) + · · ·

ŷ[n] = a[n] sin θ[n] + a1[n] sin(k1θ[n]+φ1) + a2[n] sin(k2θ[n]+φ2) + · · ·

and the amplitude estimate will be â[n] =
√

x̂2[n] + ŷ2[n]. These harmonics do not

result in a first order mean error, however, the second order expansion shows that the

mean error is

me =
1

4a

(

a2
1 + a2

2 + · · ·
)

.

A more intuitive reason why these noise sources all cause a second order mean error

on the amplitude estimate can be gained from Figure 5-3.

5.2.3 Summary

Thus we see that the Vector Readout method can perform a high-precision, stable

amplitude demodulation. We see we have a slight second-order bias in the presence

of noise, so we will turn to comparing this method to other methods now to see if

79

ak

a

Figure 5-3: Nature of Bias From Vector

Readout Amplitude Demodulation From

Harmonic Input Noise: In this figure the
vector a is the signal which is corrupted by
a harmonic ak. When ak is in the position
shown, the two vectors sum to have a mag-
nitude that is the same as a. So if we sweep
ak a complete turn, we can see that it will
result in an average magnitude slightly larger
than a because the perimeter that ak sweeps
is outside the circle of a a slight bit more
than inside.

other alternatives are better.

5.3 AM Demodulation Comparison

Full Wave Rectification

Full wave rectification involves taking the absolute value of the signal and then low-

pass filtering it. This yields the average value of the magnitude of the signal, and

this is proportional to the amplitude of the signal. While this is a simple method, it

suffers in that any noise and out of band signals (such as harmonics) also get rectified

and add a bias to the amplitude measurement.

Synchronous Modulation

If the frequency and phase of the carrier signal are known, then multiplying the

output signal by the carrier signal and then low-pass filtering gives the amplitude of

the output signal. This technique is similar to the Full Wave Rectification except

that it only rectifies signals in phase with the carrier, so it does not rectify out of

band noise. The problem with this method, however, is that it requires an accurate

knowledge of the phase and frequency of the carrier signal, and the VA output signal

may have by design a rapidly moving frequency. Thus, even though it has no mean

error, it is difficult to implement for this application.

80

Furthermore, both the Full Wave Rectification and Synchronous Modulation have

ripple that require low frequency filtering. This makes it difficult to measure fast

amplitude changes.

Peak Detect With Quadrature Signal

Sampling the output signal on the rising edge of a quadrature signal results in sam-

pling the output signal at its peak. Its limitations are that an analog comparator,

whose offset is not environmentally stable, makes the decision of when to sample.

Furthermore, it also has a second order bias.

5.3.1 Conclusion

Thus, compared to other methods that could be used, the bias of the Vector Readout

method is small, and as we will see in the next chapter, this bias is quite inconse-

quential in how much it will effect the acceleration estimate. Thus, we choose to use

the Vector Readout method of amplitude demodulation.

81

82

Chapter 6

Controller Design

The fact that the amplitude of the resonators within the accelerometer must be

controlled was introduced in Chapter 1. The reason is that the amplitude couples into

the frequency, and so any changes in the frequency due to changes in the amplitude

of the resonators will be falsely interpreted as changes in acceleration.

6.1 Amplitude Disturbances

The amplitude of the resonator can be disturbed by several sources. One notable

disturbance is caused by acceleration. This can be seen by modeling the resonator as

a second order system with a changing spring constant:

ẍ(t) + k(t)x(t) = 0,

where the spring constant k(t) changes as a function of the acceleration. The solution

to this differential equation is not trivial unless k(t) is constant, however, consider an

approximate solution for the case when k(t) is a step change such that k(t) = k1 +

∆ku(t). Suppose that for t < 0 the solution to the system is x(t) = a sin(
√
k1t+ φ).

Then the state of the system at time t = 0 can be approximated as x(0) = a sinφ

and ẋ(0) = a
√
k1 cos φ (this is an approximation because ẋ(0) will be effected by the

change in k(t)). So if we assume that the conditions at t = 0 are the initial conditions

83

to the solution of the system with the new spring constant, then the new amplitude

will be

α′ = α

√

k1

k1 + ∆k
cos2 φ+ sin2 φ.

This shows that the new amplitude depends on the phase of the position signal when

the step occurs and that the amount of change in the amplitude is maximized when

φ = 0, so the maximal change in amplitude is

α′ = α

√

k1

k1 + ∆k
. (6.1)

Furthermore it is minimized when φ = π
2

which results in α′ = α.

This approximation for the change in amplitude agrees well with simulation, and

simulation also shows that if you distribute the change in k(t) over many cycles of the

position signal, then the amount of change in the amplitude does not depend on the

phase of the signal and that it is less than the amount of change that would result

from a step change of the same amount. Notice that the amplitude disturbance is not

symmetric, which means that a step of -100g will not produce the opposite amplitude

effect when compared to a step of 100g even if they occur at the same phase. This lack

of symmetry in the amplitude disturbance is also noticeable in simulation when the

spring constant k(t) is slowly changed. This means that the common mode rejection

of the system to amplitude disturbances caused by acceleration will not be ideal.

Thus, for the purposes of this analysis, the worst case scenario is assumed such

that no common mode rejection occurs and that the error in the acceleration estimate

due to a step change of 100g can account for 10% of the allowed error. The allowed

error is 1 µg. Furthermore the amplitude disturbance due to changes in acceleration

is also assumed to be the major cause of amplitude disturbance so that other effects

neglected.

84

6.2 Sensitivity of Acceleration Measurement To

Amplitude

Before determining how to control the oscillator, we need to establish how changes

in amplitude affect the frequency. The relation between the amplitude and frequency

can be found when one considers a more accurate model of the oscillator. This is:

mẍ+ bẋ+ k1x+ k2x
2 + k3x

3 = f (6.2)

The addition of the square and cubic term in this differential equation changes the

natural frequency. Reference [6] uses perturbation methods to approximate the nat-

ural frequency of the system described by Equation 6.2, but the same result can also

be found using describing functions as follows. Consider the case when

f(t) = β cosωnt.

Since the plant causes a −90◦ phase shift at its natural frequency, we assume that

the output will be

x(t) = α sinωnt.

This means that ẋ(t), ẍ(t), x2(t), and x3(t) will be

ẋ(t) = αωn cosωnt

ẍ(t) = −αω2
n sinωnt

x2(t) =
α2

2
(1 − cos 2ωnt)

x3(t) =
α3

4
(3 sinωnt− sin 3ωnt)

Plugging these all back into Equation 6.2 and equating the sinωnt terms gives

mω2
n = k1 +

3k3

4
α2. (6.3)

85

In this approximation we use the describing function technique of neglecting any of

the frequency terms in the non-linearity that are not at the fundamental frequency.

This shows that the natural frequency is a function of the amplitude α. This approxi-

mation has been verified in simulation as shown in Figure 6-1 where both the natural

frequency relation of Equation 6.3 and the simulated frequency of the resonator are

plotted as a function of the amplitude. Solving Equation 6.3 for ωn and taking the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
18.872

18.874

18.876

18.878

18.88

18.882

18.884

18.886

Amplitude (Volts)

F
re

qu
en

cy
 (

kH
z)

Approximated Natural Frequency
Simulated Natural Frequency

Figure 6-1: Comparison
of Approximated (Equa-
tion 6.3) and Simulated
Natural Frequency.

partial derivative with respect to α yields

∂ωn
∂α

=
3k3α

4mωn
.

This is the scale factor that relates changes in amplitude to changes in frequency. If

we say that ∂ωn

∂g
= γ, where ∂ωn

∂g
is often called the scale factor of the accelerometer,

the sensitivity becomes ∂g
∂α

= 3k3α
4mωnγ

. Finally, knowing that there is a gain K from the

position α(t) (in meters) to the position signal a(t) (in volts), the sensitivity of the

acceleration measurement to changes in measured amplitude, which we call ν, is

ν =
∂g

∂a
=

3k3a

4mωnK2γ
. (6.4)

The nominal values of each of the variables in the above equation are provided in

Table 6.1. If we assume that r(t) is the reference or desired amplitude, then the total

86

m 1.325 × 10−9 kg The effective mass.
k3 61.38 × 109 N

m3 The effective cubic spring constant.
ωn 2π · 20000 rad

s
The nominal natural frequency.

a 1.0 V The nominal measured amplitude of the resonator.
K 4 × 106 V

m
The gain of the electronics which convert the position of
resonator in meters to a voltage.

γ 2π · 100 rad
g

The scale factor of the accelerometer.

ν 0.0275 g
V

The sensitivity of the acceleration measurement to
changes in amplitude.

Table 6.1: Nominal Values For Sensitivity of Accelerometer to Changes in Amplitude.

integrated error due to amplitude deviation is

ev(t) = ν
∫ t

0
a(t) − r(t) dt. (6.5)

This is the velocity error, and after To seconds, it must be less than the error budget

of the controller. This error budget has been defined to be 10% of the velocity error

which would result from a 1 µg bias.

6.3 Controller Overview

With the acceptable error defined, a controller can be designed to meet these speci-

fications. The biggest difficulty in designing the controller, however, is that the force

needs to be applied at the resonant frequency of the oscillator, and that frequency

is moving as a function of the acceleration. Thus, the controller needs to determine

both the frequency and amplitude of the force to be applied to the resonator. To

do this we use an Automatic Gain Controller (AGC) as shown in Figure 6-2. Notice

that there are really two loops in the system. The inner loop is known as the Phase

Regeneration Loop, and the outer is the Automatic Gain Control Loop. In Figure 6-

2, P (s) is the accelerometer, and the input into the accelerometer is the force f(t).

Notice that this force is the product of the AGC signal c(t) and the carrier signal

v(t). The goal of the Phase Regeneration Loop is to set the frequency and phase of

the carrier v(t). The goal of the amplitude controller G(s) is to control the amplitude

87

��
��
×��

��
×��

��
-+

r(t)
G(s) P (s)

90◦ �

-

6

-

6

--

6

-

�

+
-

a(t)f(t)c(t)e(t)

Controller

AGC

1

sinωnt

x(t)

VA

v(t)

Figure 6-2: AGC Controller Block Diagram

of the oscillation.

Figure 6-2 shows that this system is really in a positive feedback configuration.

The reason is that the outer loop can be considered a variable gain block, so the system

can be collapsed to that shown in Figure 6-3 where the outer loop is expressed as a

variable gain AGC. The first block in the feedback path of the inner loop causes a

90◦

P (s)

��

6

AGC -
f(t) x(t)

VA

v(t)

Figure 6-3: Outer Loop Collapsed To A Vari-
able Gain Block Labeled AGC.

90◦ phase shift. This has the effect of “undoing” the phase introduced by the plant.

The plant has a transfer function (see Equation 1.1) of

P (s) =
1

ms2 + bs+ k
,

so the phase of the plant at ωn is −90◦. Therefore, the 90◦ phase shifter ensures that

the phase around the loop at ωn is 0◦.

Following the phase shifter is the limiter block. This limiter performs several

useful functions. One is that it normalizes the amplitude so that the gain of the 90◦

phase shifter does not have to be unity. Therefore, a simple inverting integrator or

88

differentiator can be used to perform the phase shift.

The other useful function of the limiter is that it adjusts the gain of the system

to ensure the open loop gain at ωn is one. A positive feedback system will oscillate

at a frequency where the open loop transfer function equals one [2]. Therefore, the

limiter could perhaps more appropriately be called the automatic gain control block.

To see this consider the case when the system is oscillating at ωn and AGC is fixed.

The gain around the loop is exactly one since the system is oscillating. Now suppose

that AGC doubles. This means that output of the plant also doubles since it is

linear. However, the amplitude of the output of the limiter stays the same, so its gain

halves. Therefore, the AGC block caused the amplitude of the oscillators to double,

and the limiter automatically adjusted for this to keep the open loop gain exactly one

to ensure that oscillation continues.

One potential problem with the limiter is that it turns the 90◦ phase-shifted sine

wave into a square wave, so it also introduces harmonics into the loop. However, for

this application, the plant has a Q on the order of 100,000, so these harmonics are

severely attenuated by the plant. Therefore, they will be neglected in this analysis.

6.4 Amplitude Control

6.4.1 The Amplitude Transfer Function of the Plant

The outer or AGC loop of Figure 6-2 shows that the controller G(s) is what adjusts

the amplitude of the resonators. To design this controller, it is necessary to know how

changes in the amplitude of the drive signal effect the amplitude of the resonator. In

other words, as Figure 6-4 shows, we must collapse the amplitude modulation, the

plant, the amplitude demodulation, and the phase regeneration blocks into a single

block and find the transfer function through it. Knowing this transfer function,

which is called H(s) in Figure 6-4, enables us to design the controller G(s) to hold

the amplitude a(t) constant.

The first point to make in finding H(s) is that since modulation and demodulation

89

��
��
×��

��
×��

��
-+

r(t)

��
��

-+
r(t)

- H(s)G(s) --

6 AGC

c(t)

Plant

-

e(t) a(t)
+

G(s) P (s)

90◦

Controller

�

-

6

-

6

--

6

-

�

+
-

a(t)f(t)c(t)e(t)

Controller

AGC

1

sinωnt

x(t)

VA

v(t)

@
@

@
@

@
@

@
@@R

�
�

�
�

�
�

�
��	

Figure 6-4: Amplitude Controller Block Diagram Reduction

are non-linear, H(s) in general does not exist. However, when the accelerometer

is operating at its natural frequency, it is possible to make an approximation that

characterizes the plant well and enables us to define an H(s).

To find H(s) we assume the resonator is oscillating at its natural frequency so

that the position signal is x(t) = a(t) sinωnt. This means v(t) = cosωnt (here we

neglect the harmonics introduced by the limiter). If we send in a complex exponential

at frequency Ω as the AGC signal c(t) and follow it through each of the blocks to see

how it effects the amplitude a(t), then we can find H(jω). Thus, we define c(t) as

c(t) = ejΩt,

and after it is modulated with the phase regeneration signal, it becomes the force

signal f(t) that drives the resonator:

f(t) = c(t)v(t) = ejΩt cos(ωnt)

=
1

2

(

ej(Ω+ωn)t + ej(Ω−ωn)t
)

.

90

Thus, f(t) is the sum of two complex exponentials, and the resonator is a linear, time

invariant system of the form

P (s) =
P0

s2 + ωn

Q
s+ ω2

n

.

Since the complex exponentials of f(t) are eigenfunctions of a linear, time-invariant

system, the output of the oscillators due to the input f(t) is

x(t) =
1

2

(

|P (Ω + ωn)|ej(Ω+ωn)t+ 6 P (Ω+ωn) + |P (Ω− ωn)|ej(Ω−ωn)t+ 6 P (Ω−ωn)
)

. (6.6)

The equation for x(t) can be simplified considerably when we make the approxi-

mation that Ω is much smaller than ωn. Then the magnitude terms of Equation 6.6

become

|P (Ω + ωn)| =
P0

√

(ω2
n − (Ω + ωn)2)2 +

(
ωn(Ω+ωn)

Q

)2

=
QP0

√
Q2(Ω2 + 2ωnΩ)2 + ω2

n(Ω + ωn)2

≈
QP0

ωn

1
√

(2QΩ)2 + ω2
n

|P (Ω − ωn)| =
P0

√

(ω2
n − (Ω − ωn)2)2 +

(
ωn(Ω−ωn)

Q

)2

=
QP0

√
Q2(Ω2 − 2ωnΩ)2 + ω2

n(Ω − ωn)2

≈
QP0

ωn

1
√

(2QΩ)2 + ω2
n

.

Since these are equal, we define

P1 = |P (Ω + ωn)| = |P (Ω − ωn)|.

Now we turn to evaluating the phase terms of Equation 6.6 using the same approxi-

mation that Ω ≪ ωn:

6 P (Ω + ωn) = − arctan

(
ωn(Ω + ωn)

Q(ω2
n − (Ω + ωn)2)

)

= − arctan

(
ωn(Ω + ωn)

−QΩ(Ω + 2ωn)

)

≈ − arctan
ωn

−2QΩ

= −π
2
− arctan

2QΩ

ωn

6 P (Ω − ωn) = − arctan

(
ωn(Ω − ωn)

Q(ω2
n − (Ω − ωn)2)

)

= − arctan

(
ωn(Ω − ωn)

−QΩ(Ω − 2ωn)

)

≈ − arctan
−ωn

2QΩ

=
π

2
− arctan

2QΩ

ωn
.

This means that if we define

ψ = arctan
2QΩ

ωn
,

91

then x(t) of Equation 6.6 simplifies considerably to:

x(t) =
1

2

(

P1e
j(Ω+ωn)t−π

2
−ψ + P1e

j(Ω−ωn)t+ π
2
−ψ
)

= P1e
jΩt−ψ cos

(

ωnt−
π

2

)

= P1e
jΩt−ψ sinωnt.

The output of the resonator x(t) is then demodulated with sinωnt, so the amplitude

a(t) is

a(t) = P1e
jΩt−ψ.

So we see that if we send an AGC signal c(t) = ejΩt into the system, then the resulting

amplitude is a(t) = P1e
jΩt−ψ.

c(t) = ejΩt −→ H(s) −→ a(t) = P1e
jΩt−ψ

Thus, the systems looks linear and time invariant under the approximation that

Ω ≪ ωn. So the system H(jΩ) has a magnitude of P1 and a phase of ψ, and so H(s)

can easily be found to be a single pole system:

|H(jΩ)| = QP0

ωn

1√
(2QΩ)2+ω2

n

6 H(jΩ) = − arctan 2QΩ
ωn

H(s) =
QP0

ω2
n

1

2Q
ωn
s+ 1

 . (6.7)

With the amplitude dynamics of the plant determined and expressed as H(s) in

Equation 6.7, we can begin to design a controller which generates the AGC signal

c(t). The nominal values of the parameters in H(s) that will be used in designing the

controller are provided in Table 6.2.∗

∗The parameters such as Q, P0, and ωn within H(s) are assumed fixed, but in reality they may
change over time or from sensor to sensor. These effects will be considered later in the chapter.

92

6.4.2 The Transfer Function of the Demodulator

In determining the amplitude transfer function of the plant, H(s) in Equation 6.7, we

assumed that we are able to perform a perfect amplitude demodulation. As Chapter 5

shows, this is not really the case, so in order to make the model of the system as shown

in Figure 6-4 more accurate, we need to account for the dynamics of the demodulator.

These dynamics are introduced in the feedback path as block D(s) in Figure 6-5.

��
��

-+
r(t)

- H(s) -- G(s)

D(s) �

6 AGC

c(t)

Plant

-

e(t) a(t)
+

Controller

Demodulation

â(t)

Figure 6-5: Controller With Amplitude Demodulation Dynamics Included

The nature of D(s) depends on the method of amplitude demodulation, but using

the Vector Readout approach, D(s) is composed of a gain Kd and a delay Td.
†

D(s) = Kde
−sTd (6.8)

The gain of the demodulation Kd is fixed by the demodulation algorithm and is

provided in Table 6.2. The value of the delay Td is also set by the demodulation

algorithm, but it is adjustable and can be made as short as needed at the expense of

adding more noise to both the amplitude and frequency demodulation.

The delay Td is the result of processing done by the digital filters, and it introduces

a very significant constraint in designing the controller. In the absence of this delay,

the system is a simple first order system as defined by H(s). With the delay, however,

the open loop transfer function has a linear phase term which will pose a practical

limit on how fast the controller can be and still remain stable.

†The effects of noise from the amplitude demodulation are important and will be considered later.

93

6.4.3 Defining Nominal System Parameters

The nominal values of H(s) and D(s) are provided in Table 6.2.

P0 6.0 × 107 The unit-less gain relating the AGC signal c(t) to the po-
sition signal x(t). This assumes that the gain of the D/A
conversion is 1.

Q 70, 000 The Quality Factor of the resonator. It can vary significantly
from 10,000 to 100,000, and so the controller should be de-
signed to be insensitive to the exact value of Q.

ωn 2π · 20, 000 rad
s

The zero input natural frequency of the resonator. Nomi-
nally it will be 20 kHz but can be as low as 15 kHz.

Td 267.5 µs The time delay through the signal processing blocks of the
demodulator.

Kd 0.3294 1
V

The gain of the demodulation. The CORDIC has a gain of
1.647

2
and the A/D conversion has a gain of 1

2.5
.

Table 6.2: Nominal Accelerometer System Values

The product of H(s) and D(s) is plotted in Figure 6-6. Notice the effects of the

10
−1

10
0

10
1

10
2

10
3

10
4

−50

0

50
Amplitude Transfer Function Of Plant and Demodulator

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

10
4

−270

−225

−180

−135

−90

−45

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

Figure 6-6: Plant and AM Demodulation Transfer Function.

94

��
��

-+
r(t)

-QP0

w2
n

1

(2Q
ωn
s+1)

-- Ki

(
Kp
Ki
s+1

)

s

Kde
−sT

d �

6 AGC

c(t)

H(s) Plant

-

e(t) a(t)
+

G(s) Controller

D(s) Demod

â(t)

Figure 6-7: Amplitude Controller Block Diagram

delay on the phase. The single pole of the plant causes −90◦ of phase by 10 Hz, and

then the delay begins to get significant and introduces an additional −90◦ of phase

by 1000 Hz. When the phase caused by the delay is plotted on a log scale, it rolls

off sharply above 100 Hz. Because the phase rolls off sharply while the gain roll off

remains fixed at -10 dB per decade, it makes pushing the unity crossover frequency

above 1000 Hz difficult and presents a limitation on the bandwidth of the controller.

The easiest way to combat this limitation is decrease the amount of the delay.

The sharp roll off of phase due to the delay makes the Gain Margin an important

measure of stability if unity crossover occurs in the region where the phase is steep.

The reason is that slight variations in the open loop gain can cause significant changes

in the unity crossover phase, and these changes will greatly effect the stability of the

system.

6.4.4 Designing The Controller

Using H(s) and D(s) defined in Equations 6.7 and 6.8, we now turn to designing the

controller G(s) which will hold the amplitude a(t) constant. The control loop is shown

again in Figure 6-7 showing G(s) as a PI (Proportional plus Integral) controller. This

controller has several advantages for this system. One is that it has zero steady state

error, which is necessary in keeping the acceleration error bias to a minimum. The

zero steady state error results because the PI controller has a pole at zero. The second

advantage of the PI controller is that it compensates for the addition of a pole into the

system by putting a zero at a high frequency to allow one to increase the bandwidth

95

of the system. Thus we can define G(s) to have the form

G(s) =
Ki

s
+Kp, (6.9)

and it remains to find controller coefficients which can meet the design specification.

With H(s), D(s), and G(s) specified, we can write the open loop gain of the

system as

L(s) =
QP0KiKd

ω2
n

(
Kp

Ki
s+ 1

)

s
(

2Q
ωn
s+ 1

) e−sTd (6.10)

We can see from this loop equation that we have control over both the gain of the

system and the location of the zero.

Disturbance Rejection

The most important task of the controller is to reject amplitude disturbances to

an acceptable level. An amplitude disturbance b(t) due to acceleration changes can

be modeled as an additional input signal in the system block diagram as shown in

Figure 6-8. The transfer function from the disturbance to the amplitude is

��
��

-+
r(t)

��
��

- QP0

w2
n

1

(2Q
ωn
s+1)

-- Ki

(
Kp
Ki
s+1

)

s

Kde
−sTd �

6

-
?

AGC

c(t)

H(s) Plant

-

e(t)
+

G(s) Controller

D(s) Demod

â(t)

a(t)

b(t)

+
+

+

Figure 6-8: Control Loop With Additive Disturbance

A(s)

B(s)
=

1

1 +H(s)G(s)D(s)

=
ω2
ns
(

2Q
ωn
s+ 1

)

ω2
ns
(

2Q
ωn
s+ 1

)

+KiQP0Kd

(
Kp

Ki
s+ 1

)

e−sTd

.

96

We are interested in minimizing the velocity error ev(t) as defined in Equation 6.5,

which is

ev(t) = ν
∫ t

0
a(t) − r(t) dt. (6.11)

Using linearity, we can find how much each input individually contributes and add

them to find the total error. Therefore, if we assume that the set point r(t) is held

constant for all time and if b(t) is shut off, then the output a(t) will also be constant

for all time and r(t) will contribute zero error to ev(t). Then if we shut r(t) off and

turn b(t) on, we can find how much error the disturbance will cause. The integral of

Equation 6.11 is not easily evaluated, but we can find the total velocity by letting

t→ ∞. This is just the total area under a(t), and if we assume that b(t) = 0 for t < 0,

then this can easily be found by using the transform property that the area under

the time domain signal is the same as the Laplace Transform of the signal evaluated

at zero. Thus, if the input disturbance is a step of amplitude β, then B(s) = β
s
, so

the total velocity error is

lim
t→∞

ev(t) = νA(0) =
νω2

nβ

KiQP0Kd
(6.12)

Notice that the velocity error does not depend on the proportional coefficient, but

only on the integral coefficient. It also shows that the error is minimized as Ki is

maximized. If the location of the zero is kept fixed so that the ratio of Kp to Ki is

fixed, then increasing Ki increases the open loop gain and pushes unity crossover out.

This increase in bandwidth makes the controller faster at responding to disturbances,

but it also makes it more responsive to noise. Thus, before we design this controller

to maximize Ki, we need to look at the noise/bandwidth trade off to see if there are

any issues with having a fast controller.

If we say that the total velocity error of Equation 6.12 must be less than the error

budget, then we can find a bound on the integral coefficient. This is

Ki >
νω2

nβ

EQP0Kd

,

97

where E is the error budget and is assumed to be 2.45 × 10−4 m
s
. If we assume a

worst case step input of a step of 100g, then by using the nominal values of Table 6.1

and 6.2 and the relation of Equation 6.1, then β = 0.3, and the bound on Ki is

Ki > 0.384. (6.13)

Noise Rejection

There are three sources of noise that can enter into the loop. The first is noise picked

up in the analog gain circuitry. The second is the noise introduced by the amplitude

demodulation. Both of these noise sources where characterized in Chapter 5, and

the third noise source is the noise of the D/A converter. The controller is really a

discrete-time controller, and its output is converted to an analog voltage, and this

D/A conversion will have noise on it. All of these noise sources can be characterized

as additive noise sources which inject noise at various spots in the system. We will

first focus on the effect of the first two noise sources which can be combined into

a single noise source that corrupts our estimate of the amplitude. In Figure 6-9,

this noise is shown as the signal ea(t), where a(t) and ea(t) are summed together to

produce the signal â(t), which is the amplitude measurement. The transfer function

��
��

-+
r(t)

��
��

-QP0

w2
n

1

(2Q
ωn
s+1)

-- Ki

(
Kp
Ki
s+1

)

s

Kde
−sTd ��

6

6

AGC

c(t)

H(s) Plant

-

e(t) a(t)
+

G(s) Controller

D(s) Demod

â(t)

+
++

ea(t)

Figure 6-9: Amplitude Control Loop With Additive Noise

from the noise to the amplitude is

A(s)

Ea(s)
=

−H(s)G(s)

1 +H(s)G(s)D(s)

98

=
−KiQP0

(
Kp

Ki
s+ 1

)

ω2
ns
(

2Q
ωn
s+ 1

)

+KiQP0Kd

(
Kp

Ki
s+ 1

)

e−sTd

.

This is a cumbersome response, but as Figure 6-10 shows, this frequency response

can be approximated well with a single pole of the form

A(s)

Ea(s)
=

1/Kd
2ωn

P0KdKp−2ωnKi/Kp
s+ 1

.

This approximation was obtained by dropping the delay term, dividing by the zero

to find the approximate single pole location, and then creating the single pole system

with the correct DC gain.

10
−1

10
0

10
1

10
2

10
3

10
4

−40

−30

−20

−10

0

10

Closed Loop Amplitude Response

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Actual Response
Single Pole Appoximation Response

Figure 6-10: Closed Loop Amplitude Demodulation Noise Response.

In Chapter 5 we characterized ea(t) as a white noise random process. We will

assume it has a noise power of σ2. Since the noise gets filtered by a single pole, any

noise that has power above the break point will be attenuated by the system. Bringing

this break point down would result in more noise filtering, but the cost would be a

reduction in bandwidth of the controller, which results in less disturbance rejection

and more velocity error.

It turns out for this system that the amount of noise attenuation is of negligible

99

consequence because if the noise is zero mean, it will not cause an acceleration estima-

tion error bias. It will, however, cause random walk on the velocity estimate because

amplitude movement feeds through with a scale factor of ν onto the frequency, and

we saw in Chapter 4 that error on the frequency estimate causes a random walk on

the velocity estimate. The amount of random walk, however, is effected little by the

location of the break point of the filter because the DC component of the noise is

what an integrator gains the most.

To see that it is of negligible advantage to reduce the breakpoint of the filter,

consider the following derivation. If the injected noise is white and filtered by a first

order system with a pole at τ , then the autocorrelation of the noise after the filtering

is

Kaa(t) =
1

2τ
e

−|t|
τ .

The signal is then sampled at rate T , so the autocorrelation becomes

Kaa[n] =
1

2τ
e

−|n|T
τ .

This signal then feeds through onto the frequency with scale factor ν and is then

integrated with a first order accumulator of the form

v̂[n] = v̂[n− 1] + T ĝ[n],

so the variance of the velocity estimate will be

σ2
v [n] = ν2σ2T 2

n
n−1∑

i=−n+1

Kaa[i] − 2
n−1∑

i=0

iKaa[i]

 .

When nT gets large compared to τ , this approximates to

σ2
v [n] ≈ ν2σ2nT 2 − ν2σ2T 2 e

−T
τ

τ(−1 + e
−T
τ)2

≈ ν2σ2nT 2.

100

In the absence of filtering, the variance is exactly equal to ν2σ2nT 2, so it means that

the low pass filter has little effect in reducing the random walk when the time of the

measurement is much larger than the time constant of the filter. This shows there

is no real advantage to making the controller slower to increase the amount of noise

attenuation, and since there is an advantage to making it faster, the controller will

be optimized for speed.

Σ-∆ D/A Conversion

The third noise source injects its noise on the AGC signal c(t), and this noise is the

result of the D/A conversion. This conversion is being performed using a first order

Σ-∆ modulator. For this application a Σ-∆ modulator has a unique advantage over

traditional converters.

The input into the Σ-∆ modulator is a digital word which represents the AGC

value, and it is running at 200 kHz. The output is a 1 bit sequence ĉ[n] as shown in

Figure 6-11. This sequence is converted from a digital bit into a digital logic level of

h

h

- -

�

6

1 bit
Quantizer

-

-

�

z−1

+

+

c[n]

- +

-

+ ĉ[n]

e[n]

Figure 6-11: First Order Σ-∆ Modulator.

either 0 V or 5 V. It is then filtered by a double pole low pass analog filter and level

shifted to be centered between -2.5 V and 2.5 V.

The whole D/A process is shown in Figure 6-12. The quantizer within the Σ-∆

modulator is represented as an additive noise source which is zero-mean, white, and

uniformly distributed with variance σ2
q = 1

3
(assuming that c[n] represents a fractional

number between -1 and 1). The process of converting the digital sequence into an

101

h

h

h Convert To
Impulse
Train

6

h0(t)- - h(t) --
6

+ -

�

-

-

�

z−1

+

+
?

T

Zero
Order
Hold

ĉ(t) c(t)c[n]

-

+

- +

e[n]

e[n]

ĉ[n]

Low Pass
Filter

Figure 6-12: D/A Conversion With Σ-∆ Modulator.

analog voltage can be viewed as converting the sequence to an impulse train and then

filtering it with a rectangular box filter h0(t) where

h0(t) =

1, 0 ≤ t ≤ T

0, otherwise.
� -

T

t

0

1

h0(t)

H0(jΩ) =
2 sin ΩT/2

Ω
e−jΩT/2

− 4π
T

− 2π
T

2π
T

4π
T

T

Ω

|H0(jΩ)|

6

?
-�

This is a zero-order hold D/A conversion. At this point the signal is an analog signal

which is the composite of the true AGC signal and the quantization noise, so it is

low-pass filtered by h(t) to cut the quantization noise. The transfer function of the

filter is

H(s) =
1

(τs+ 1)2

where τ = 1
2π·30e3 .

We are concerned with how the quantization noise effects the acceleration mea-

surement, and since this system is linear, we can analyze how the error source effects

it independently of the true AGC signal. The error source e[n] (shown in Figure 6-12)

is shaped by the Σ-∆ modulator to push the noise into high frequency bands. The

noise on the output of the Σ-∆ modulator has a power spectral density of [7]

102

Sĉĉ(e
jΩ) = 4σ2

q sin2 Ω

2
.

−2π −π π 2π

4σ2
q

Ω

Sĉĉ(e
jΩ)

6

?
-�

It is then converted to a continuous time impulse train, where it becomes

S(jΩ) =
4σ2

q

T
sin2 ΩT

2
.

− 2π
T

− π
T

π
T

2π
T

4σ2
q

T

Ω

S(jΩ)

6

?
-�

Then after being filtered by the zero-order hold filter H0(jΩ), the quantization noise

becomes

Sĉĉ(jΩ) =
16σ2

q sin4 ΩT/2

TΩ2
.

− 2π
T

− π
T

π
T

2π
T Ω

Sĉĉ(jΩ)

6

?
-�

This shows the noise is shaped as desired in that the noise power is minimized at low

bandwidths, which is where the AGC signal c(t) is. The low-pass filter H(jΩ) serves

to attenuate the noise and pass the AGC signal. After the low pass filter the noise

becomes

Scc(jΩ) =
16σ2

q sin4 ΩT/2

TΩ2(τ 2Ω2 + 1)2
. − 2π

T
− π

T
π
T

2π
T Ω

Scc(jΩ)
6

?
-�

So you can see that as you decrease T (increase the sampling rate) it pushes the

quantization noise power higher and higher. Since the AGC signal and the poles of

the low-pass filter are independent of the sampling rate, the effect is that more of

the quantization noise is attenuated. This means that the Σ-∆ modulator should

run as fast as the hardware will allow. The only problem with this is that the input

c[n] must be upsampled to match the sampling rate of the Σ-∆ modulator. If this

upsampling is a simple zero-order hold, however, the signal portion of the output

c(t) will be exactly the same as it would have been otherwise since the actual D/A

conversion is also a zero-order hold converter. More complicated methods (such as

first-order hold) could be employed if c[n] is of sufficient bandwidth where the droop

of H0(jΩ) is of concern, but for our application it is fine.

103

Thus, for this application we upsample c[n] with a simple zero-order hold to 10

MHz and run the Σ-∆ modulator at this rate. The resulting power spectrum is

shown in Figure 6-13. If this noise spectrum is integrated and the resulting variance

10
−2

10
0

10
2

10
4

10
6

10
8

−250

−200

−150

−100

Frequency (Hz)

S
cc

(jΩ
)

(d
B

)

Σ−∆ Quantization Noise

Figure 6-13: Quantization Noise From Σ-∆ D/A AGC Conversion.

is converted into an equivalent number of bits, the result is about 7 bits. This is not a

very good converter, and it could easily be made better by decreasing the bandwidth

of the analog lowpass filter. The problem with doing that, however, is that these

poles start adding phase to the open loop system and reduce the bandwidth of the

controller. It turns out, however, that this converter does not necessarily need to

be any better than it is because the noise gets filtered further by the plant and the

closed loop system. To see this, we first model the noise source as shown in Figure 6-

14 where the Σ-∆ modulator noise is called ec(t). The transfer function from this

noise source to the amplitude is

A(s)

Ec(s)
=

H(s)

1 +G(s)H(s)D(s)
,

which is plotted in Figure 6-15. This is a bandpass filter which has a zero at zero

and further attenuates the higher order noise. Thus, the quantization noise of the

Σ-∆ modulator that appears on the amplitude of the resonator is shaped such that

104

-+
r(t)

G(s)

Controller

��
��

-
+ ��

��
H(s)

Plant

D(s)

Demod

--

6

- -

�

?e(t)

â(t)

a(t)
+

+c(t)

AGC

ec(t)

Figure 6-14: Block Diagram Depicting Additive Σ-∆ Quantization Noise

10
−2

10
0

10
2

10
4

10
6

10
8

−140

−120

−100

−80

−60

−40

−20

0
Closed Loop Response To Σ−∆ Quantization Noise

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Figure 6-15: Σ-∆ Quantization Noise To Amplitude Transfer Function.

it has two zeros at zero and four poles at higher order frequencies. The amplitude

noise feeds through to become frequency noise with a scale factor of ν, and since its

spectrum has a zero at zero frequency, it does not result in a substantial random

walk after it is converted to an acceleration estimate and then integrated to become

a velocity estimate (see Chapter 4). Thus, the noise due to the D/A conversion is

actually of little consequence compared to the noise that gets injected prior to and

during AM demodulation.

105

6.4.5 Designing Around the Open Loop Transfer Function

We have established that the controller needs to be as fast as possible for two reasons.

One is that it increases the DC gain of the closed loop system and the other is that the

controller is faster at compensating for a wider range of amplitude disturbances. The

open loop system is plotted in Figure 6-16. This shows that the delay introduced by

the digital filters is what constrains the bandwidth of the controller because pushing

the bandwidth out too far will cause the system to be unstable.

10
−1

10
0

10
1

10
2

10
3

10
4

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

Open Loop Transfer Function With PI Controller

10
−1

10
0

10
1

10
2

10
3

10
4

−240

−210

−180

−150

−120

−90

Frequency (Hz)

P
ha

se
 (

de
g)

Plant
Pole

Unity Crossover

Controller
Zero

Unity Crossover
Phase

Figure 6-16: Open Loop Transfer Function of System.

Thus, in order to design this controller to maximize the DC gain and bandwidth

under the constraints of stability, we use the following approach. As shown in Fig-

ure 6-16, the phase of the open loop system has a local maximum which results from

the addition of the positive slope of the controller zero and the negative slope of the

106

delay. This phase maximum makes a great position to crossover because the system

will be optimally stable at that point. The frequency of this local maximum is

ωc ≈
√

Ki

TdKp

.

With this set as the crossover frequency, we have constrained the system enough to

uniquely determine Ki and Kp, which are

Kp =
ωcτp

√

T 2
dω

2
c + 1

K0

Ki =
−TdK3

pK
2
0

T 2
dK

2
pK

2
0 − τ 2

p

.

Using the nominal values of the accelerometer as provided in Table 6.2 and forcing

unity crossover at 200 Hz gives Kp = 22.36 and Ki = 988.8. The open loop transfer

function for the system with these controller values is plotted in Figure 6-16. You can

see that with these values, Ki is about three orders of magnitude larger than it must

be in order to ensure that a 100g disturbance does not cause more than 10% of the

error budget in the mean acceleration estimation error as stated in Equation 6.13.

One may notice and argue then that this controller could stand to be a lot slower

and still meet the specification, and while this is true, we established that there is

no real harm in adding more noise to the system by speeding it up since the random

walk is dominated by the low bandwidth noise. Furthermore, in practice we found

that a crossover of around 200 Hz was necessary for the servo to adequately null the

amplitude error due to ambient room temperature variation.

6.4.6 Stability Margins

Since not all sensors will have exactly the same parameters and since these parameters

may change over time for a given sensor, it is important to characterize the stability

margins of the controller and consider worst case parameter variation to ensure that

107

the system will be stable. The open loop transfer function found in Equation 6.10 is

L(s) =
QP0KiKd

ω2
n

(
Kp

Ki
s+ 1

)

s
(

2Q
ωn
s+ 1

) e−sTd.

The only parameters that may drift over time or be different from sensor to sensor

are Q, ωn, and P0. The other parameters, which are Ki, Kp, and Td can be changed,

but once they are set by the designer they are fixed and will not drift.

The phase margin for the values of Kp and Ki found in the previous section is

50.6◦, and the gain margin is 4.40. These margins offer more than adequate stability

as can be seen from the following cases of parameter variation:

Q: The variation in the quality factor Q of the resonator is from 10,000 to 100,000.

The stability of the system, however, is not significantly affected by the value

of Q. Changes in the value of Q will change the location of the plant pole and

scale the DC gain, but the unity crossover frequency and phase are not affected.

This is shown in the plot in Figure 6-17.

ωn: Variations in the natural frequency can range from 10 kHz to 30 kHz, and these

changes actually change the gain of the system as can be seen in Figure 6-

18. The worst case scenario is when the natural frequency is at 10 kHz, and

Figure 6-18 shows that the system is still stable and has around 40◦ of phase

stability.

P0: The variation in the DC gain of the plant can be caused by differences in mass

or capacitance from sensor to sensor. Under these conditions, the gain margin

is 4.40, which is more than enough for such parameter variation. One area

that may be of concern, however, is if the mechanical designers change these

parameters in future revisions of the mechanical structure. If this is ever the

case the controller coefficients can be scaled accordingly and everything will still

work the same.

108

10
−1

10
0

10
1

10
2

10
3

10
4

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

Open Loop Transfer Function With Q Variation

Q = 1,000
Q = 10,000
Q = 100,000

10
−1

10
0

10
1

10
2

10
3

10
4

−240

−210

−180

−150

−120

−90

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6-17: Open Loop Transfer Function With Q Variation

6.5 Conclusion

Therefore, we have found a controller that is more than adequate at meeting the

design constraints. Furthermore we have shown it has sensible stability margins and

that it behaves well under disturbances and noise.

109

10
−1

10
0

10
1

10
2

10
3

0

50

100

M
ag

ni
tu

de
 (

dB
)

Open Loop Transfer Function With ω
n
 Variation

ω
n
 = 10 kHz

ω
n
 = 20 kHz

ω
n
 = 30 kHz

10
−1

10
0

10
1

10
2

10
3

−240

−210

−180

−150

−120

−90

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6-18: Open Loop Transfer Function With ωn Variation

110

Chapter 7

Conclusion

7.1 Design Specification Check

In the preceding chapters each component of the system used to control the Vibratory

Accelerometer was analyzed and characterized in great detail. Putting all of this

together and plugging in the nominal values of the accelerometer enables us to see

how well the system meets the design specifications stated in Chapter 1.

7.1.1 Dynamic Range (1µg to 100g)

The upper limit of the dynamic range is interpreted for this application to be the

point of hard saturation. Under extreme conditions, the accelerometer can experience

±100g, which corresponds to a frequency swing between 10 kHz and 30 kHz. This

swing in frequency does not pose saturation issues to the A/D converter, the Hilbert

Transform filter, or the CORDIC. The saturation issue occurs when adjacent angle

samples coming out of the CORDIC are subtracted. Thus, the register that performs

the subtraction must be large enough to handle a frequency of 30 kHz. This has been

ensured.

The lower limit of the dynamic range is interpreted to be the RMS value of the

noise on the acceleration estimate over a 1 Hz bandwidth. All the noise sources on the

acceleration estimate as characterized in previous chapters fit into three categories.

The first is the stochastic noise sources in Table 3.2. These noise sources, however,

111

are differentiated white noise, so as one reduces the bandwidth from 5 kHz to 1 Hz,

these noises virtually disappear and become negligible. The other type of noise in

Table 3.2 is that due to harmonic input, and the 1 Hz filter will also remove these. The

last noise source is that which feeds through the amplitude loop onto the frequency.

Figure 6-10 shows the spectrum of this noise. If we temporarily assume that this

noise is actually white over the full 100 kHz bandwidth and that it has power σ2,

then the same white noise will appear on the frequency estimate with power

σ2
ĝ = 2ν2σ2

where ν is the scale factor from amplitude to acceleration as found in Equation 6.4

and the factor of 2 results from the fact that there are two channels with independent

noise sources of the same power. If this noise is filtered by a 1 Hz filter, then it will

reduce the noise by a factor of 10−5, and so the RMS value becomes

σĝ = 0.307 µg.

This is 3 times better than the specification of 1µg. In fact, we can obtain the 1µg

specification if the acceleration signal is filtered to any frequency below 10 Hz.

Acceleration Estimation Bias (< 1 µg)

In Equation 4.13 we found the acceleration estimation error for the Weighted Differ-

ence method when the frequency estimates of channels A and B are corrupted with

noise. As mentioned, this noise produces a fixed bias that can be calibrated out, but

here we assume a worst case scenario that it is not calibrated out. From Equation 4.13

we can see that if channel A has noise power of σ2
a and channel B has noise power of

σ2
b , then the mean error in the acceleration estimate will be

me =
ω2

0b − ω2
0a

γ(ω2
0b + ω2

0a)
2

(

ω2
0bσ

2
a + ω2

0aσ
2
0b

)

112

Using Table 3.2 and the nominal values of the accelerometer, namely, ω0a = 2π ·
20, 000 rad

s
, ω0b = 2π · 19, 000 rad

s
, and γ = 157.9× 106 rad2

s2g
, we can find the total bias

error that will result in the acceleration error. The results for each noise source are

included in Table 7.1.

Velocity Estimate Random Walk (< 0.014 ft
s
√

hr
)

The velocity estimate random walk for the Weighted Difference method of compensa-

tion was characterized in Tables 4.4 and 4.5. Once again we consider the three types

of noise that corrupt the acceleration estimate. Table 3.2 provides the description

of the differentiated white noise and deterministic noise sources, and Section 6.4.4

describes the velocity estimation random walk which comes from noise in the ampli-

tude loop. The amount of velocity estimate random walk that results from each of

these noise sources has been calculated and provided in Table 7.1. Table 3.2 shows

that when the noise sent into the compensator is differentiated white noise or a de-

terministic harmonic, it is of negligible consequence to the random walk. The reason

that the differentiated white noise case is so negligible is because we chose to use

the Weighted Difference method of compensation (see Chapter 4). The reason that

the amplitude loop noise causes the majority of the random walk can be seen by

comparing Tables 4.4 and 4.5. If the position signal has a noise dominated by the

white noise of the first analog gain stage, which is σ2, then it feeds through onto the

actual amplitude with unity gain, meaning the actual amplitude of the resonator has

noise power σ2. The amplitude affects the velocity noise power as σ2
v [n] = 2ν2σ2nT 2,

where ν is a scale factor determined by Equation 6.4. Therefore, the velocity random

walk is νσ
√

2T . Using nominal values gives the results in Table 7.1. This shows the

random walk is an order of magnitude better than the design specification.

7.2 Implementation Details

This project was a large success in terms of finding a method to both amplitude

and frequency demodulate the position signal of the Vibratory Accelerometer and in

113

Noise
Source

Conditions

Acceleration
Estimate

Mean Error
(µg)

Velocity
Estimate
Random
Walk(

ft
s
√

hr

)

A/D
Converter

Quantization

Input has amplitude a = 1V
and gets quantized to Bx = 11
fractional bits.

3.22 × 10−4 1.52 × 10−8

Hilbert
Transform

Quantization

Output register of the Hilbert
filter is quantized to Bh = 15
fractional bits.

6.30 × 10−7 2.98 × 10−11

CORDIC
Quantization

The CORDIC algorithm is iter-
ated N = 15 times.

1.26 × 10−6 5.95 × 10−11

Hilbert Gain
Error

Gain Response has worse case
gain ripple of ǫh = 1.8 × 10−4.

1.21 × 10−4 0

A/D Bias
A/D offset removed by filtering,
so a0 = 0.

0 0

White Input
Noise

Input has amplitude a = 1V
and is corrupted with zero-mean
white noise with power σ2 =
6.25 × 10−6V2 prior to being
sampled.

0.1014 4.79 × 10−6

Harmonics
Input Noise

Input has amplitude a = 1V
and is corrupted with 3 harmon-
ics at 40 kHz, 60 kHz, & 80 kHz,
all with an amplitude of -60 dB.

0.0487 0

AM Demod/
Controller

Noise

Each position signal has ampli-
tude a = 1V and noise σ2 =
6.25 × 10−6V2.

≈ 0 2.65 × 10−3

Totals 0.15 µg 2.7 × 10−3 ft
s
√

hr

Design Specification 1.0 µg 1.4 × 10−2 ft
s
√

hr

Table 7.1: Acceleration Estimation Bias Errors and Velocity Estimation Random Walk.

terms of the implementation. Amazingly, within hours of the first-time programming

of the FPGA which implements all the digital blocks discussed in this thesis, the

system was working in its ability to both amplitude and frequency demodulate test

114

signals. Even more amazingly, within minutes of the first time we put a sensor in the

system and turned on the power, the loop closed and the controller maintained the

oscillation of the two resonators.

One reason for this ease in implementation was that the complete system was

modeled and simulated prior to actually testing it in the lab. All the analog circuitry

and mechanical systems were modeled in VHDL (VHSIC Hardware Description Lan-

guage), and then the digital logic, which was also implemented in VHDL, was tested

via simulation. This enabled most of the debugging to be done in simulation prior to

actually testing it in the lab.

We are using a Xilinx XCV800 FPGA for this design, and because of the modular-

ity that VHDL allows, each block within the gate array can be synthesized individu-

ally. This allows one to see how large various parts of the design are. The Xilinx part

we used contains 9408 slices, and two slices compose a Xilinx CLB (Combinatorial

Logic Block). This FPGA has 888,439 system gates, which means the slice count

which the Xilinx software reports can be converted to an equivalent number of gates.

In Table 7.2 a summary of the slice count, the equivalent gate count, and the size

percentage of each block is presented. The synthesis tool that we used was Synplicity,

and it really did a great job at efficiently synthesizing this design.

This shows that the filter block is only twice as large as the CORDIC block, which

means the filters block is quite small considering its functionality. The reason is that

the Xilinx gate array has on-chip RAM which is where the tap-delay lines of the filters

are stored.

This table shows that we are using approximately half a million gates. It also

shows that if area ever becomes a concern, one of the first places to simplify is the

Interfaces block. This block is a very versatile block which allows the user to control

the functionality and the state of the system through a computer, and it also contains

several communication layers that allow data to be sent to a computer. It has been

designed for versatility in testing and debugging the system, and so it can be simplified

greatly as the need for its functionality decreases.

Most of the blocks in Table 7.2 have been highly optimized for size. Some of the

115

Component Description
Slice

Count

Gate
Equivalence

Percent

Filters

• 2 - Folded Hilbert Transform Filters
(47 Taps, 16 bit delay line, 16 bit
coefficients)

• 2 - Folded Direct Form Bandpass
Filters (62 Taps, 12 bit delay line,
16 bit coefficients)

1099 103,783 11%

CORDIC
• 2 - CORDIC Implementations (20

bit internal registers, 20 bit arctan()
lookup table, 16 iterations)

457 43,157 4%

Controller
• 2 - PI Controllers (24 bit floating

point coeff, 16 bit input)
• 2 - Σ-∆ Modulators (1st order)

768 72,526 8%

Weighted
Difference

• 2 - 9 bit × 24 bit multiplier
• 1 - 24 bit adder
• 1 - 24 bit subtracter

313 29,557 3%

Non-Linear
Compensator

• 9th order polynomial (24 bit input,
24 bit floating point coeff)

786 74,225 8%

Interfaces

• 8 bit UART
• Hybrid XModem Comm. Protocol
• Control Logic
• 24 bit Bus
• Decimation Filters

1044 98,895 11%

Complete
System

• Everything Mentioned Above
• Timing Logic
• A/D Control Logic
• Output Decimation Filter
• Pseudo Random Noise Generator
• Minor Glue Logic

5895 556,691 62%

Table 7.2: Summary of Resource Usage and Total Gate Count.

features used to ensure a small design are the following:

• Since each channel of the accelerometer has both a bandpass and a Hilbert

Transform filter, and since multiplication is large in terms of combinatorial

logic, these filters have been implemented in a processing engine which uses a

single MAC (Multiply/Accumulate) unit. Therefore, the filter block contains

only 2 MAC units, one for each channel. The system clock is not fast enough

to allow a single MAC unit to be shared between all the filters, but if in the

future the size of this design becomes an issue, this is one area where savings

could be accrued by simply doubling the system clock or halving the sampling

rate and sharing a single MAC between all four filters.

• We saw in Chapter 2 that the in-phase channel needs to be delayed to remain

synchronous with the quadrature channel, and since the Hilbert Transform filter

116

already contains a delay line, it has been shared with in-phase channel. Thus,

no extra hardware is used to delay the in-phase channel, and this results in

substantial savings in the amount of RAM used.

• Since both channels have the exact same bandpass and Hilbert Transform filters,

the filter coefficients are shared between the channels.

• The two CORDIC blocks share the small ROM which stores the angle lookup

table.

• The Non-Linear Compensator implements a ninth order floating point polyno-

mial. Real savings have been obtained by implementing all the multiplications

within this block using an add/shift technique which works in much the same

way a human would multiply large numbers by hand. The reason that a multi-

plication of this form is possible here is that the signals have been downsampled

prior to being compensated, and so there are enough system clock ticks between

samples to perform the multiplication this way. The filter block does not have

sufficient time to use an add/shift multiplication scheme, and so it cannot ben-

efit from the savings of not using a combinatorial multiplier.

If the size of this design ever needs to be reduced in the future, one area that could

greatly reduce size is to reduce register widths. This, of course, reduces the precision

of the system, but as shown in Chapter 4, these digital blocks are several orders of

magnitude more precise than they need to be. Since area is not a concern now, there

is no reason to try to reduce the size of one area of the system which will not need

improved and redesigned even as other areas of the system are.

7.3 Data Collection Software

Part of this project involved building an RS-232 serial communication interface to

a computer. The purpose of this interface is for collecting data and controlling the

state of the system. I implemented a UART in the FPGA which took care of the low-

level communication issues. Then at the data level I implemented a hybrid XModem

117

protocol which had 6 data channels. Two of these channels are 24 bits wide and run

at 500 Hz. The other four are 16 bits wide and run at 125 Hz. This enables us to

collect data at a rather high rate.

Figure 7-1: Data Collection Software

I also wrote the software on the PC that both controls the state of the system

as well as receives the data. A picture of the GUI of this software is provided in

Figure 7-1. I wrote it in Java and added features such as real time display of the

data. This proved very useful in the debug stages and will be used by future test

engineers as they rigorously test the system. This software allows the user to set the

controller coefficients, frequency weighting coefficients, controller set point, controller

set point gain, sampling rates, and compensator coefficients. Furthermore, it lets the

user select to collect data on over 16 different internal registers including such signals

118

as amplitude, frequency, frequency difference, frequency sum, acceleration estimate,

AGC, temperature, and set point.

7.4 Real Data

0 10 20 30 40 50 60

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A
cc

el
er

at
io

n
(g

)

Time (sec)

(a)

7.5 8 8.5 9 9.5 10 10.5 11
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

A
cc

el
er

at
io

n
(g

)
Time (sec)

Shaking Accelerometer

(b)

Figure 7-2: Data Collected From Accelerometer (a) Accelerometer Rotated 180◦ In Earth’s
Gravitational Field, (b) Accelerometer Manually Shaken.

The electronics have been tested and debugged at this point. The amount of

acceleration data taken at this point is limited as others are working on packaging

issues to make it possible to mount the sensor on a dividing head and test it more

thoroughly. However, as shown in Figure 7-2, we have run simple functional tests

of the accelerometer. The first graph starts with the accelerometer measuring the

gravitational force of the earth, which is 1g. The sensor is then rotated 180◦ to

measure -1g, and finally it is rotated back to measure 1g. The second graph shows

the accelerometer initially positioned to measure the earth gravitational field (1g),

and then it is manually shaken. Both of these functional tests verify that the sensor

is working.

119

7.5 Next Stage

This project is just one part of a large effort at Draper Laboratory to build a high

precision MEMS accelerometer. There has been a lot of work done by others prior

to this project, and there will be much work to do after this. This includes rigorous

testing of the instrument to find its limitations in terms of environmental stability

and resolution, continued research and improvements in fabrication, and revising the

mechanical structure to improve the deficiencies found during testing.

The electronics design as they stand now are very solid and stable and should not

need any major revisions. The next step will be to migrate them to an ASIC. The

digital electronics designed here are not the dominant source of noise and error in the

electronics, so if future improvements are required, they will probably be to find ways

of reducing noise in the charge amplifier which is the first stage analog amplifier of

the position signal. It is the largest electrical noise source in the system.

Thus far, this project has been a large success, and I consider myself fortunate to

have been involved with it. This has been a very interesting and aggressive design

problem that has solidified and expanded much of my classroom education. Once

again I would like to thank all those that made it possible.

120

Bibliography

[1] E. Antelo, J.D. Bruguera, T. Lang, and E.L. Zapata. Error Analysis and Reduc-

tion for Angle Calculation Using the CORDIC Algorithm. IEEE Transactions

on Computers, 46(11):1264–1271, September 1997.

[2] L.A. Gould, W.R. Markey, J.K. Roberge, and D.L. Trumper. Control Systems

Theory. 1997.

[3] Yu Hen Hu. The Quantization Effects of the CORDIC Algorithm. IEEE Trans-

actions on Signal Processing, 40(4):834–844, April 1992.

[4] Clyde F. Coombs Jr. Electronic Instrument Handbook. McGraw-Hill, Inc., 1994.

[5] Kishore Kota and Joseph Cavallaro. Numerical Accuracy and Hardware Trade-

offs for CORDIC Arithmeic for Special-Purpose Processors. IEEE Transactions

on Computers, 42(7):769–779, July 1993.

[6] Ali Hasan Nayfeh. Nonlinear Oscillations. Wiley, New York, 1979.

[7] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.

Prentice Hall Signal Processing Series. Prentice Hall, New Jersey, second edition,

1999.

[8] L.R. Rabiner and R.W. Schafer. On the Behavior of Minimax FIR Digital Hilbert

Transformers. The Bell System Technical Journal, pages 363–390, February 1974.

[9] Martin S. Roden. Analog and Digital Communication Systems. Prentice Hall,

Inc., New Jersey, fourth edition, 1996.

121

[10] Jack E. Volder. The CORDIC Trigonometric Computing Technique. IRE Trans-

actions On Electronic Computers, pages 330–334, September 1959.

[11] J.S. Walther. A unified algorithm for elementary functions. Spring Joint Com-

puter Conference Proceedings, 38(7):379–385, 1971.

[12] Conversations with Paul Ward of Draper Laboratory.

122

