
HARDWARE EFFICIENT LOSSLESS IMAGE COMPRESSION ENGINE

Lane Brooks and Keith Fife

SMaL Camera Technologies
10 Wilson Rd

Cambridge, MA 02138

ABSTRACT

A complete in-stream lossless hardware image compres-
sion engine is implemented with a channel splitting and
division-free arithmetic encoding technique. The hardware
is less than 7000 gates and requires 0.3 mm2 of area in
a 0.35 µm process. An average of 46% compression is
achieved over a diverse set of images.

1. INTRODUCTION

For DSC applications, image compression is desirable for
increasing the number of images stored in non-volatilemem-
ory and for reducing the time required to download images
from camera to host. A frame buffer is usually required
in cameras because non-volatile memory write speeds are
lower than the desired data rate of image sensors. Typically,
image compression is performed after the transfer from sen-
sor to frame buffer since the buffer is readily accessible for
performing complex image compression techniques.

In systems where typical compression techniques such
as JPEG are not appropriate, positioning the compression
between the sensor and the frame buffer has an advantage of
reducing the size and cost of the frame buffer itself. In or-
der to exploit this benefit, a hardware efficient compression
engine has been developed that performs in-stream image
compression.

Data compression can be broken into a modeling and an
encoding phase. The modeling phase reduces the entropy
by modeling any redundancy in the data set. The encoding
phase then compresses the stream to match the entropy of
the data set.

2. DATA MODELING

The data stream from the image sensor contains raw Bayer
data where pixels in each row alternate between either red
and green or green and blue. With this color scheme, a data
set that skips every other pixel is likely to show a stronger

Acknowledgements to Charles Sodini, Harry Lee, and Anantha Chan-
drakasan.

correlation than just a simple sequence of adjacent pixels.
Many different techniques such as CALIC [1] have been
developed to do predictive modeling of image data streams.
Since row buffers are not available for this particular in-
stream compression scheme, all modeling must be limited
to one dimension. Thus, this work presents a first-order pre-
dictive model that subtracts every other pixel and encodes
the result as shown in the block diagram of Figure 4. Ta-
ble 1 shows the significant performance improvement the
Bayer Differencing method offers.

Raw
Image

Bayer
Differencing

Improvement

bits/symbol bits/symbol %

Image A 6.4 3.6 43.7%
Image B 6.7 4.0 40.3%
Image C 7.2 5.5 23.6%

Table 1. Average entropy (bits/symbol) of sample images.

3. DATA ENCODING

Arithmetic encoding is employed to encode the data stream
because it does not require large hardware lookup tables or
trees. The encoded symbol can be efficiently obtained in
a single clock cycle as the result of a calculation. Further-
more, arithmetic encoding can reach the entropy of the data
set regardless of the probability distribution [2]. Techniques
such as Huffman encoding require each symbol to be en-
coded with an integer number of bits. Since arithmetic en-
coding encoding does not have this constraint, a channel
splitting technique described later may be employed.

The use of adaptive arithmetic encoding is essential for
high compression performance. This requires two hardware
intense operations. One is a division to calculate the proba-
bility from the adaptive histogram, and the other is a multi-
plication to rescale the state variables of the encoder. There
are some techniques [3] which facilitate multiplication-free
arithmetic encoders in order to reduce the hardware require-
ments of that function. For further reduction in hardware,

V - 1850-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

a division-free adaptive histogram technique is developed
here.

4. DIVISION-FREE ARITHMETIC ENCODING

A histogram of M bins has bin counts of m1, m2, . . . ,
mM and the total number of elements in the histogram is
N = m1 + m2 + · · · + mM . When the arithmetic encoder
seeks to encode a symbol, the probability of that symbol
must be calculated as px = mx/N . To remove the need for
this division, we use an adaptive histogram building tech-
nique that keeps N fixed at a power of 2 such that the divi-
sion reduces to a simple bit shift. To keep N fixed, we re-
move elements from the histogram as new ones arrive. One
way to do this is to track the order in which symbols are
received and remove them in a FIFO fashion. To remove
the need for a potentially large FIFO, a weighted round-
robin removal approach is constructed as shown in the flow
chart of Figure 1. The basic idea is that a histogram removal
pointer cycles through the histogram removing elements in
a weighted manner as each new symbol arrives. A FIFO for
a 256 bin histogram would need to be 256 bytes deep. The
round-robin removal approach reduces this requirement to
just a single register for the removal pointer and single reg-
ister for the removal count (x and k respectively as indicated
in Figure 1). This reduction in hardware comes without a
sacrifice in performance as shown in Table 2.

FIFO
Removal

Round-Robin
Removal

Image A 55.2% 55.6%
Image B 49.5% 49.7%
Image C 30.5% 30.7%

Table 2. Comparison of compression ratios from arith-
metic encoding utilizing different division-free encoding
techniques.

5. CHANNEL SPLITTING

One severe problem with using an adaptive compression
technique is storing the histogram. In the case of an 8 bit
per pixel image stream, 256 bins are needed. Experimen-
tation shows that a depth of 10 bits (i.e. N = 1024) in
each bin provides a good trade-off between letting the adap-
tive histogram go stale versus having enough data to yield
good statistics. This requires that the histogram be made
of 10x256 = 2560 registers. To reduce this requirement, a
channel splitting technique was developed.

Channel splitting takes the 8 bit stream and breaks it into
smaller independent streams. For example, one can split the
8 bit stream into a stream of the 4 MSBs and a stream of the

Wait for next
symbol y

Add Symbol y to
Histogram 2:
m y = m y+1

k==0 ? 3

Advance to Next
Bin4:

x=x+1

Yes

Reset Weight:
k = m

x
/4

Decrement
Weight:
k=k-1

No

Remove Symbol
from Histrogram 5:

mx = m x - 1

Initialize Data
Structures 1

1. Set k = 0, x = 0, & initialize histogram bins.

2. my is the number of elements in bin y.

3. k is the removal weight factor. When entering a bin for removal, k
is the number of elements that will be removed.

4. x represents the bin from which elements are being removed. This
count will wrap to zero when x equals the number of bins in the
histogram.

5. mx is the number of elements in bin x. mx must always be greater
than 0, so if mx equals 1, then neither the addition or the removal
of an element occurs.

Fig. 1. Flow chart of weighted round-robin histogram up-
date procedure for division-free arithmetic encoding.

V - 186

➡ ➡

Image A Image B Image C

Fig. 2. Sample images used to demonstrate results.

0

1

2

3

4

5

6

7

8

9

Uniform Geometric
(p=0.5)

Poisson (l=20) Normal (u=180,
s=20)

Image A Image B Image C

B
it
s/

S
ym

b
o
l One Channel

Two Channels

Three Channels

Four Channels

Fig. 3. Entropy comparison for probability distributions and sample images under different channel-splitting configurations.

Round-Robin, Division-
Free, Adaptive Histograms

Bayer Differencing

-

Histogram

Histogram

Histogram

8

3

3

2

8

8

8

Arithmetic
Encoder

FIFO

Data In

Data Out

8

8Channel
Splitting

- 269 Total Registers
- 0.3mm 2 in 0.35um process
- ~7000 gates

Fig. 4. Block diagram of complete encoder.

V - 187

➡ ➡

4 LSBs. Now two histograms are needed to track the statis-
tics of the MSB and the LSB channel independently. These
two histograms now only have 16 bins each. Experimenta-
tion with the 2 channel approach shows that the bit depth
of each histogram should be 9 bits. Now the register count
for the histograms is 2x9x16 = 288 bits which is nearly 10
times smaller than the previous requirement. Further ex-
perimentation with splitting into three channels (one 2 bit
channel and two 3 bit channels) shows that the bin preci-
sion should be 8 bits. This reduces the histogram hardware
to 2x8x8+4x8 = 160 registers, which is a 16x reduction in
the number of registers needed for the adaptive histogram.

Traditional approaches to entropy encoding employ sym-
bol joining to grow the width of each symbol to yield better
results. When symbols are joined, however, the size of the
histogram to track the statistics of the image grows with the
square of the number of bits. For example, combining two
bytes to form a 16 bit channel would cause the histogram
to grow from 256 bins to 65536 bins. Channel splitting re-
verses this approach to allow the histograms to shrink and
thus be more amenable to a hardware implementation.

In theory, when no channel splitting is used, the entropy
of the symbol to be encoded can be expressed as

H1 =
255∑

i=0

−pX(x)log2(pX(x)). (1)

When a two channel approach is used to track the statistics,
we assume the last N bytes of the data stream accurately
describe the true probability distribution of the symbol to
be encoded so that the entropy can be expressed as

H2 =
m=15∑

m=0

l=15∑

l=0

pX(M)pX(L)log2(pX(M)pX(L)), (2)

where M = 16m+l and L = 16l+m. A similar expression
can be derived for any configuration of channel splitting.
Since the entropy of the data set expresses the amount of
information in the symbol in bits/symbol, the performance
of the compression engine under the various channel split-
ting scenarios can be compared through their respective en-
tropies. However, the relationship between Equations 1 and
2 is not obvious, so the results of the various channel split-
ting options have been compared for different probability
distributions in the plot of Figure 3. These samples along
with three examples of real images show that the channel
splitting performance is comparable to the more traditional
single channel approach.

6. RESULTS

The above techniques were developed with the need for
a hardware efficient in-stream image compression engine.

The resulting system is shown in the block diagram of Fig-
ure 4 with the addition of a small output FIFO to absorb
jitter produced by the variable length encoding. The round-
robin removal technique actually works synergisticly with
the channel-splitting technique. Since channel-splitting re-
duces the number of bins in each histogram, the cycling rate
of the histogram removal pointer (x in Figure 1) increases.
Working together in this manner, the histogram refreshes
quicker, which reduces the precision requirements for the
histogram bins (i.e. the reduction of N from 10 to 9 to 8 as
the channel splitting went from 1 channel to 2 channels to 3
channels).

Experimentation with this compression engine over a
wide class of images yields an average 46% compression
ratio which is equivalent to reducing the image from 8 bits
per pixel to 4.6 bits per pixel without a loss in image quality.
The engine is completely described by the block diagram of
Figure 4 in that it functions without the need for any periph-
eral devices such as a RAM or processor. The total number
of registers in the complete design is 269. Synthesized for
a 0.35µm process, the design takes 0.3 mm2 of area and
approximately 7000 gates.

7. REFERENCES

[1] Khalid Sayood, Introduction to Data Compression,
Morgan Kaufmann Publishers, 2000.

[2] Ian Witten, Radford Neal, and John Cleary, “Arithmetic
coding for data compression,” Communications of the
ACM, June 1987.

[3] Bin Fu and Keshab K. Parhi, “Generalized
multiplaction-free arithmetic codes,” IEEE Transac-
tions on Communications, May 1997.

V - 188

➡ ➠

