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Abstract—A method of indirect background digital calibration of the dominant static

non-linearities in pipelined ADCs is presented. The method, called Decision Boundary Gap

Estimation (DBGE), monitors the output of the ADC to estimate the size of missing code

gaps that result at the decision boundaries of each stage. Missing code gaps result from such

effects as capacitor mismatch, finite op-amp gain, comparator offset, and charge injection.

DBGE does not require special calibration signals or additional analog hardware and can

even reduce the performance requirements the analog circuitry. The calibration is performed

using the input signal and thus requires that the input signal exercise the codes in the vicinity

of the decision boundaries of each stage. If it does not exercise these codes, then calibration

does not matter because the non-linearities will not appear in the output signal. DBGE is

simple and amenable to VLSI and/or processor implementations even in older fabrication

technologies. Simulation results indicate DBGE is highly accurate, robust, and adaptive

even in the presence of parameter drift and thermal noise.

Index Terms—pipelined analog-to-digital converter (ADC), adaptive digital background

calibration, capacitor mismatch, finite op-amp gain, static nonlinearity.



1 Introduction

Pipelined analog-to-digital converters (ADCs) can realize high throughput and high reso-

lution simultaneously. CMOS switched-capacitor based implementations have been widely

researched and used in industry. In the absence of trimming or calibration, these implemen-

tations typically suffer from static non-linearities that limit the resolution to 8 to 10 bits [5],

[9], [13].

These non-linearities have spurned many circuit and calibration techniques for realizing

much higher resolutions. Analog circuit techniques such as those in [12] and [14] use analog

components in the signal path to generate higher linearity at the expense of conversion

speed. Digital circuit calibration techniques, which realize the benefits of device scaling,

have also been developed and can be categorized into foreground and background techniques.

Foreground calibration, as demonstrated in [9] and [10], requires interrupting normal ADC

operation for calibration. In contrast, background techniques operate calibration circuits

continuously and transparently so that users do not see service interruption.

Background techniques can further be classified into direct and indirect methods. Direct

methods measure the errors with calibration signals during hidden calibration time slots. A

“skip-and-fill” approach is used in [14] where the input samples are interpolated during a

hidden calibration phase. A queue-based approach is used in [3]. The drawback of these

approaches is that they require redundant channels/stages and/or their overall accuracy is a

function of the coverage of the calibration signal, which cannot follow the same path as the

signal exactly.

Indirect methods of calibration overcome the calibration signal coverage issue by esti-

mating the errors from the input signal itself without the use of calibration signals. In [5]

the dominant non-linearities of pipelined ADCs are modeled and corrected using adaptive

equalization techniques prevalent in digital communications. It requires an additional “slow-

but-accurate” ADC for reference and uses a very complicated algorithm for correction. In

[8] they note that when an input signal has a low-pass input histogram, the non-linearities
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of the ADC will generate high-pass components in the output histogram. Thus they col-

lect an output histogram, low-pass filter it, and generate a correction map from the raw

histogram space into the smoothed histogram space. In [7] they also use code densities or

histograms with a second ADC to generate a correction map. These techniques are to vary-

ing degrees either algorithmically or hardware intensive such that they are not VLSI and/or

computationally efficient, even at state-of-art silicon device scales.

Indirect calibration requires making assumptions about the input signal and possibly the

errors themselves. For example, [8] assumes the input signal distribution is low-pass and

[6] requires the input signal be over-sampled so that the spare bandwidth can be used to

estimate assumed non-linearities. Presented herein is a technique called Decision Boundary

Gap Estimation (DBGE) for indirect digital background calibration. DBGE removes the

dominant non-linearities of pipelined ADCs that appear as missing code gaps at decision

boundaries. DBGE, therefore, models these gaps and relies on the input signal to exercise

the codes in the neighborhood of these gaps to estimate and remove them.

2 Pipelined ADC Error Models

A pipelined ADC consists of lower resolution ADCs, as shown in Figure 1, concatenated

together to form the desired resolution. Initially we consider a 1 bit/stage (bps) pipelined

ADC and later extend the concept of DBGE to other resolutions. The typical 1 bps pipeline

stage implementation is shown in Figure 2. The dominant static non-linearities of such a

circuit implementation are caused by capacitor mismatch, finite op-amp gain, comparator

offset, and charge injection [2], [5], [9], [13].

Each of these effects are modeled and characterized in Figure 3. The plots on the left

show the analog voltage transfer function of a single 1 bps pipeline stage. The plots on the

right show the resulting digital output when the remaining stages are linear. Each of these

effects produces a non-linearity at the decision boundary of the comparator. When all these

effects are considered together as in the last plot of Figure 3, the digital output contains a
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Figure 1: Block diagram of an N bps pipeline
stage.
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Figure 2: Typical circuit implementation of 1
bps pipeline stage. Single-ended version shown
for simplicity.

single non-linearity of missing codes that straddles the decision boundary of the comparator.

DBGE works by estimating the size of this missing code gap and removing it to make the

ADC linear.

An important caveat to realize when designing for DBGE is that an intentional radix

reduction is necessary to ensure that a missing code gap results even under worst case offsets

and mismatch [9]. Thus for this 1 bps ADC, each stage requiring correction must have a

radix less than 2. If this is not the case, then the residue amplification can go out of range

causing a duplicate code region. DBGE cannot correct for duplicate code regions. The

exception to this are designs with redundancy for over-range protection. Since they do not

produce duplicate regions, they do not require a radix reduction.

3 Gap Correction

In a 1 bps pipelined ADC, the resolution of the ADC is set by the number of stages. If we

start with a k− 1 bit ADC and want to add 1 more bit of resolution, we simply add 1 more

stage at the beginning of the concatenation and k bits are generated. Since is it possible to

build a linear 8 to 10 bit ADC without trimming or calibration, DBGE starts by assuming

that the we have a linear k − 1 converter and that adding stage k does not increase the

resolution because of the resulting decision boundary missing code gap. Thus stage k is the

first stage requiring correction.
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Stage Voltage Transfer Digital Output

Ideal Case: vo = 2vi + dvref

d = 1 when the comparator output is high and d = −1
when it is low.

Stage Voltage Transfer Digital Output

Capacitor Mismatch: v0 = (2 + ε)vi + (1 + ε)dvref

ε is the percentage of capacitor mismatch. When
ε < 0 as depicted, a missing code gap results at the
decision boundary of the digital output.

Stage Voltage Transfer Digital Output

Finite Op-amp Gain: vo = 2vi+dvref

1+ 1
A

A is op-amp gain. When A is low enough it can
produce a missing code gap in the digital output at
the decision boundary.

Stage Voltage Transfer Digital Output

Comparator Offset: vo = 2vi + dvref

Comparator offset shifts when d transitions from 1 to
-1. Duplicate codes result on one side of the decision
boundary and missing codes on the other side.

Stage Voltage Transfer Digital Output

Charge Injection: vo = 2vi + dvref + vos

vos is the amount of offset added by charge injection.
Up-down shifts in the voltage transfer function cause
duplicate codes one side of the decision boundary and
missing codes on the other side.

Stage Voltage Transfer Digital Output

Everything: If the gain of the residue amplification
is low enough, then when all errors are considered
together the digital output contains a single non-
linearity of missing codes that straddles the decision
boundary.

Figure 3: Error models for various decision boundary non-linearities.

Correction of stage k proceeds as shown in Figure 4. When stage k produces a bit

or decision output Dk, it is concatenated with the output of the other stages to produce

the raw sample xk. xk is passed to the estimator to produce an estimate of the gap size.
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Figure 4: Block diagram of a single correction stage using DBGE. CAT block performs con-

catenation of bits. EST block produces an estimate of the decision boundary gap according to

Eq 3. COR block corrects the sample according to Eq 1 to produce a linear output sample yk.

Assuming the estimator produces a good estimate ğk of the gap size, then the non-linearity

is removed from xk by subtracting the gap size from all samples above the gap. Expressed

mathematically, the linearized or corrected sample yk is

yk =


xk, when Dk = 0

xk − ğk, when Dk = 1
(1)

Sample yk is now free of the non-linearity that was limiting the overall resolution, and so an

additional k +1 stage can be added by via concatenation. Stage k +1 can then be corrected

in the same manner as stage k by using the corrected sample yk. We will see later, however,

that feeding the corrected sample into stage k + 1 can cause problems with the estimator,

so we will show in Section 4.3 how to concatenate further stages to avoid this problem.

This correction scheme has been demonstrated previously in [9]. There a sub-radix-

2 pipelined ADC was designed and the gap was measured directly during a foreground

calibration phase by driving the decision boundary voltage into each stage. This technique

works well as witnessed by the 15 bit ADC. The drawback is that foreground calibration
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requires taking the ADC out of service for calibration. Thus it suffers from calibration drift

and/or service interruptions.

4 Gap Estimation

4.1 Initial Gap Estimate

In order to develop an adaptive and indirect decision boundary gap estimation, we start by

assuming a linear k − 1 bit ADC and add stage k to precede it. We model the resulting

gap non-linearity produced by stage k with the signal flow graph of Figure 5. Here we do

not model the effect of the unknown offset and gain, and initially we ignore all noise sources

except the non-linearity induced at the decision boundary. The non-linearity is modeled as

an unknown nonrandom parameter e1 or e0 added to the signal when the MSB decision Dk

is 1 or 0 respectively. Our observation of the data is the digital output of the ADC xk. The

goal is to estimate the gap size gk, which is gk = e1−e0. Since we constrain all stages needing

correction to have a radix less than 2, e0 must be less than 0 and e1 must be greater than 0.

In redundant designs such a 1.5 bps pipelined ADC, it is not necessary to reduce the radix

because e0, e1, and gk can be either positive or negative.

If we receive a collection of N samples of xk and split it into two sets X1 and X0 where

X1 is the set of all samples with an MSB decision Dk = 1 and X0 is the set of all samples

Figure 5: Signal flow graph showing how signal vk gets corrupted by offsets e0 and e1 to produce
bit boundary missing code gaps.
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with Dk = 0, then we propose an initial estimate g̃k of the actual gap gk to be

ẽ1 = min{X1}

ẽ0 = max{X0}

g̃k = ẽ1 − ẽ0. (2)

This estimator watches the data stream to find the maximum sample received below the

decision boundary and minimum sample received above the decision boundary and subtracts

the two to form the estimate g̃k. Depending on the probability distribution of input voltage

vk, this estimate has varying degrees of performance. Whenever the probability distribution

of vk peaks or shares a peak at the decision boundary (which is midscale for a 1 bps ADC),

then this estimate is a Maximum-Likelihood (ML) estimate. Qualitatively, the more likely

the input signal is to exercise the codes at the decision boundary, the better this estimation

performs and vice versa. This is a desirable trend given that the impact of the non-linearity

is a function of how often the non-linearity appears in the data stream. Furthermore, if

the input signal has finite probability to be within one quantum of the decision boundary,

then as the number of samples approaches infinity, the bias of this estimate approaches 0.

How quickly it converges depends on the probability density in the region of the decision

boundary.

The above estimate has a very efficient processor and/or VLSI implementation. It re-

quires 2 registers for tracking the minimum ẽ1 and maximum ẽ0 estimates and some com-

parison logic. Estimation proceeds as each sample is received. First the MSB decision Dk

is checked. If it is 1, then the sample is compared against the minimum register and the

minimum is updated if necessary. If Dk is 0, then the maximum register is compared and up-

dated if necessary. To track changes in the gap that result from environmental changes, the

minimum and maximum registers can be reset at a rate that matches the desired adaptation

rate.
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4.2 Improved Gap Estimate

The initial gap estimate provided in Equation 2 suffers from a problem when one includes

the effects of additive thermal noise in the analog processing path. Figure 6 shows the results

of a simulation which plots histograms of the X1 set. In this simulation a gap e1 = 4.25 was

added to a uniformly distributed input source. The first histogram was created in the absence

of thermal noise, and as expected, the ẽ1 estimate will correctly latch 4 as the minimum.

Thus the gap will be removed to within the resolution of the ADC. In the second histogram,

however, an additive white Gaussian noise with zero mean and standard deviation of 0.5

LSB was added to the source prior to quantization. The sharp edge of the histogram now

appears smoothed, and the ẽ1 estimate will latch in 2 as an incorrect estimate. This shows

how thermal noise biases the ẽ0 and ẽ1 estimates to under compensate for the actual gap

size.

To deal with this one needs to reduce the thermal noise below the quantization noise.

While this is desirable independent of DBGE, to avoid further constraining the thermal noise

budget, we can effectively reduce the thermal noise below the quantization level with the

following adjustments to the estimates:

ê1 = ẽ1 + s

(
1− hs[ẽ1]

hs[ẽ1 + s]

)

ê0 = ẽ0 − s

(
1− h−s[ẽ0]

h−s[ẽ0 − s]

)
ĝk = ê1 − ê0. (3)

Here we define hs[m] as a super histogram bin made by summing s histogram bins according

to

hs[m] =
m+s−1∑

i=m

h[i]

where h[i] is the histogram count of sample i. The motivation for these corrective terms can

be seen in the last histogram of Figure 6. These correction terms groups s histogram bins
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Figure 6: Histogram at bit boundaries a) in absence of noise, b) in presence of noise, and c) in
presence of noise while using bin spreading to generate the adjusted minimum estimate.
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together to form a super bin that spans the spread of the edge in the histogram caused by the

thermal noise. We then adjust this bin to have the same height as his neighboring super bin

and use the new width to indicate where the actual minimum is. Thus we approximate the

input voltage that spans these two super bins as uniformly distributed. This approximation

is reasonable for many applications, especially high bit depth ADCs.

If the number of samples used per estimate is large enough to approximate with certainty

that ẽ0 and ẽ1 have latched in over compensating values, then using the uniform distribution

approximation for the two adjacent super bins, the variance λ of the ĝk estimate is bounded

by λ ≤ 2
M1

+ 2
M0

. M1 and M0 are the number of samples collected in super bins hs[ê1 + s]

and h−s[ê0 − s] respectively. This bound can be calculated by modeling each histogram bin

as a binomial process under the constraint that M1 and M0 samples were received in the

appropriate super bin. This bound has been verified in simulation, and it shows that as

the spread s of the super bins increases, the ability to suppress the noise increases because

M0 and M1 increase. The approximation that these bins are uniformly distributed over this

spread may weaken as you increase the spread, so the spread should be designed to be as

small as possible after the thermal noise level has been established.

This more robust estimate ĝk is still very computationally friendly. Each estimate ê0 and

ê1 requires an additional two registers for cumulating two super histogram bins. A division of

these two registers must be performed, but since the estimate will be running at a very slow

rate compared to that of the ADC, it can implemented serially using shifts and subtractions

for minimal gate count.

4.3 Concatenation of Additional Stages

There are two different approaches that can be taken when concatenating additional stages

in front of the stage k. One can either feed the raw sample xk or the linearized sample yk to

the newly added stage k + 1. If the linearized sample yk is sent, then problems occur with

the estimator of stage k +1 every time stage k updates his estimate. For example, if stage k
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starts with a gap estimate of 0 and after some time updates that estimate to 10, the samples

being fed to stage k + 1 will suddenly change by 10. This skew between the samples already

collected and the new samples will cause the estimator in stage k + 1 problems.

One way to deal with this is to require a block based training procedure. This is only

practical when DBGE is not being performed in real time but instead on a block of already

collected samples. Under block based training, we start by training the estimator of stage k

by passing the complete data set through it. We then pass the data through stage k again

but this time training is disable and correction is enabled. Since stage k is done training, its

estimates are stable and will not change, so the complete data set is corrected with a single

gap estimate. This corrected block of data can then be sent to stage k + 1. Again we feed

the data set to stage k + 1 in two phases—first for training and then for correction. This

two phase correction scheme can then continue until all stages are trained and corrected.

If adaptive and real-time correction is desired, then a simple way to deal with the problem

of lower order stages effecting the statistics of higher order stages is to feed the raw samples

xk to the estimators and let the corrected sample accumulated in parallel to it. When one

does this, however, extra book keeping of the gap estimate for each stage is required because

the corrected sample and the estimated gap size are done on different signals. The extra

book keeping is quite minimal and requires a correction factor to each stage’s gap estimate

as follows

ğn = ĝn +
n−1∑
i=k

ği

= ĝn − ĝn−1 + 2ğn−1. (4)

The resulting block diagram is shown in Figure 7, which shows the concatenation of 4

correction stages. For VLSI implementations, the logic required to concatenate stages is

only 2 adders per stage.

Correction stages can be added to any desired bit depth. As stages are concatenated, it

is important to realize how the input voltage probability distribution changes for each stage.
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Figure 7: Block diagram of concatenated stages utilizing DBGE. CAT block performs concate-

nation of bits. EST block produces an estimate of the decision boundary gap according to Eq 3.

COR block corrects sample according to Eq 1. Correction stages can be added ad infinitum.

The input voltage into the most significant stage is exactly that of the input signal. This

stage takes the input signal, gains it by 2, cuts it in half, shifts the two segments on top of

each other, and sums them. The effect on the probability distribution is shown in Figure 8

for several different input distributions over the first 3 stages. The dotted line of each graph

is the decision boundary location where we approximate uniform probability density. One

can see that the mixing incurred at each stage tends to flatten the probability density out

and thus another validation of the approximation used in Equation 3.

5 Extensions

The motivation for DBGE came from the observation that the non-linearities that dominate

CMOS switch-capacitor circuit design cause missing code gaps at each decision boundary.
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Figure 8: Input voltage probability distributions get mixed by each pipeline stage. Examples of a
Gaussian, sine wave, and uniform input are shown. The dotted line shows the decision boundary
location.

The technique, however, is general to a broader class of both implementations and architec-

tures. It applies to any situation where the amplified error or residue from each stage causes

a decision boundary gap. For the pipelined ADC this occurs when the pipeline stage divides

the signal up and does not correctly map these signals directly on top each other as in the

ideal case.

Thus, pipeline ADCs with multiple bits per stage can also benefit from DBGE. If re-

dundancy is used as in a 1.5 bps ADC [11], the radix of each stage does not need lowered

because the gap can go negative without producing duplicate codes. The reason that the
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radix needs lowered for the 1 bps ADC is that the gap cannot go negative but gets clamped

at 0 and produces duplicate codes. This makes the 1.5 bps ADC particularly well suited

for DBGE. Higher resolution stages without over-range redundancy will need their radix

lowered to make DBGE possible.

6 Simulation Results

DBGE has been simulated under several different conditions [4]. Shown here are the results

of a 13 stage 1.5 bps pipelined ADC simulated with the mismatch parameters specified in

Table 1. A 13 stage 1.5 bps ADC should produce 14 bits of resolution, but as shown in the

INL and DFT plots of Figures 9 and 10, these mismatch parameters result in an effective 9

bit ADC.

Stage
Capacitor
Mismatch

Op-amp Gain
Comparator

Offset
Voltage
Offset

% - % of Vref % of Vref

12 1.19 342 0.24 -0.41
11 1.64 106 -0.06 -0.30
10 -1.21 197 4.72 0.16
09 -0.65 154 -2.07 0.39
08 1.07 421 2.71 -0.15
07 -0.88 162 0.26 -0.43
06 0.21 260 2.69 -0.48
05 -0.09 151 -0.99 -0.04
04 0.51 143 3.91 -0.43
03 -0.54 499 -2.16 -0.26
02 0.05 187 -1.47 0.47
01 1.80 305 3.07 0.40
00 1.66 435 4.19 0.35

Table 1: Simulation Setup Consisted of 13 1.5 bps stages.

For these simulations the effects of thermal noise are modeled by adding a dose of zero

mean additive white Gaussian noise with a standard deviation of 0.22 LSBs to each stage

for each sample. Thus, the total thermal noise at the output is 0.25 LSBs. DBGE was

then performed on the first 7 stages. 100,000 zero mean Gaussian samples with standard
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Figure 9: INL of 13 stage 1.5 bps ADC with mismatch parameters specified in Table 1. Uncor-
rected ADC has INL as big as ±20 LSBs on a 14 bit scale. After DBGE, the resulting INL is ±1
LSB.
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Figure 10: DFT of 13 stage 1.5 bps ADC with mismatch parameters specified in Table 1 resulting
from a full scale sine wave. Uncorrected ADC has ENOB of 9 bits. After DBGE, the resulting
ENOB is 13.5 bits.
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deviation of
Vref

5.5
were sent into the ADC for training. After DBGE, the resulting effective

number of bits is 13.5 (see Figures 9 and 10), which is only 0.5 bits lower than the same ADC

under ideal conditions. The ENOB (Effective Number of Bits), SINAD (Signal to Noise and

Distortion Ratio), and THD (Total Harmonic Distortion) were measured according to the

procedures in [1]. Table 2 summarizes the results for both the raw and corrected ADC.

ENOB (bits) SINAD (db) THD (db)
Raw 8.9 55.6 -80.7

Corrected 13.5 83.3 -109.1

Table 2: Simulation Results.

7 Conclusion

Decision Boundary Gap Estimation (DBGE) is an adaptive, digital, indirect method of

background calibration for removing missing code gaps at decision boundaries in ADCs.

These are the dominant static non-linearities in pipelined ADCs, and DBGE provides a

stochastic approach to removing them. The performance, therefore, is directly related to

likelihood of the input signal to be in the neighborhood of these decision boundaries, and

simulation results have verified the performance over a wide range of signals and conditions.

The advantages of DBGE are numerous. There is no need for either additional analog

hardware, such as a redundant channels/stages or a reference converter to calibrate against.

The calibration is highly accurate because the transition points are directly aligned. Further-

more, its simplicity makes it very amenable to VLSI and/or processor based implementations.

Thus, DBGE is a calibration approach that can be implemented to improve existing ADC

designs or to shape new designs by relaxing analog circuit requirements for high gain op-

amps, matched capacitors, and low offset comparators. Reducing these design constraints

allows the designer to reduce power and/or increase conversion speed, and perhaps most

importantly, it can be an enabling factor for ADC design in deep sub-micron technologies.
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