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Motivation

* Technology scaling is making opamp-based SC
circuit design increasingly difficult

* Op-amp design issues
— Decreasing voltage supplies
* Reduces signal swing
* Requires increase in capacitance to maintain SNR
— Decreasing intrinsic device gain
*Cascode gain stages
— Exacerbates low swing problem
*Cascade gain stages
— Stability versus bandwidth/power tradeoff



Comparator Based Circuits

 Comparator Based Switched Capacitor’
(CBSC) Circuits:
— Eliminate op-amps and stability issues

— Utilize architectures similar to op-amp based circuits
* Works with ADCs, DACs, Filters, Amplifiers, etc.

— Amenable to scaled technologies
— Operate more power-efficiently

1. T. Sepke, et. al., “Comparator-based switched-capacitor circuits
for scaled CMOS technologies,” ISSCC 06.



Op-amp Based Switched-Capacitor
Charge Transfer Phase

— Op-amp forces virtual ground condition
— Exponential settling to virtual ground




Comparator-Based Switched-Capacitor
Charge Transfer Phase

— Current source sweeps the output voltage

— Comparator detects virtual ground condition and turns off
current source

— Correct output voltage is sampled on C,

— Y

t 6



CBSC Observation

* A general purpose
comparator must
compare two arbitrary
voltages

* CBSC comparators:

— Do not have arbitrary
iInputs

— Have inputs that are
constant slope voltage
ramps

— Perform a zero-
crossing detection

Sample CBSC Inputs




Zero-Crossing Based Circuits (ZCBC)

* CBSC circuits generalize to Zero-Crossing Based
Circuits (ZCBC)

— Zero-Crossing Detector (ZCD) replaces comparator




Dynamic ZCBC Transfer Phase

« C, and C, sample the input signal in a previous
sampling phase

- Transfer phase goal: Charge C, to the voltage
that realizes the virtual ground condition on v,
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Dynamic ZCBC Implementation

* @ initializes charge transfer
— Vp gets reset high l

— Vo gets reset low —
vpj o
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— Vyx gets pushed down
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Dynamic ZCBC Implementation

* Current source turns on
— Vo and vy start ramping o
* vy ramps until it turns on M, —
— M, pulls vp low P j \
— Sampling switch M, turns off L S SR
— Bottom-plate sampling 6 o
;
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Dynamic Zero-Crossing Detector

Not suitable as a general
purpose comparator

— Switching threshold depends
on input waveform

Fast 04
Simple Voltage
Rail-to-rail swing Ramp ~

Amenable to scaling

Energy efficient - draws no
static current
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Dynamic Zero-Crossing Detector
Limitations

* Inherently single-ended
— Suitable for low to medium
resolutions

* The offset is ramp-rate,
temperature, and process _
dependent 04

— An auto-zeroing circuit can Voltage
null these dependencies Ramp X—l
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Simplified ZCBC Pipelined ADC
Schematic

Stage k Stage k+1

Transfer Phase Sample Phase
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Current Source Splitting

— Switches S, and S, ~_ Original CBSC Schematic

cause non-linearities and
limits output swing

— Splitting the current Evref 1 L

source up removes the Xl
series switches g
— Switches S; and S, omeeee R bt T
remove current mismatch This ZCBC Schematic
— All other switches are ;r * 5
connected to DC : D Vo :h§:3_6 ®
' I | ———
voltages and do not = 1S,
contribute non-linearites. | T T _ +! |
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Bit Decision Comparators

* Bit decisions comparators (BDC) provide a coarse
guantization of the output voltage vg

* When implemented using clocked comparators,

they lie in the critical path
— They make their decision after one stage ends ramping
and before the next stage can begin.

— Meta-stability issues can arise if they are not given
ample time to make their decsion

— Requires the design of a fast clocked comparator
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Bit Decision Flip-Flops

© The time at which v, switches 2P 5¢
is proportional to the output 0, T
voltage.

« Sampling vp with a Bit
Decision Flip-Flop (BDFF)

provides a coarse
guantization.

* Analogous to a single-slope

ADC.
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Complete ZCBC Schematic
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BDFF Phase Generation

* A Voltage Controlled Delay Line (VCDL) generates
the bit decision clock phase

* A charge pump controls vg to set the delay
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BDFF Feedback Loop

Use bit decision threshold Vgge/4 as input into a
replica ZCBC stage

The bit decision D out of the replica stage
indicates if @sp Is ahead or behind

D adjusts the VCDL delay each clock cycle
The small amount

of jitter on @sp in 9 . lvebL i)
steady-state is D
not problematic l
because of over- Replicad..-
range protection p ZCBC

Stage | Vrer/4
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Bit Decision Flip-Flop Discussion

* Implementing the BDC as a flip-flop removes it
from the critical path

— The bit decisions are made in parallel with the voltage
ramp and are ready by the time the transfer phase ends

— Eliminates meta-stability issues
— Eliminates the need for a fast clocked comparator
— A standard flip-flop suffices

* A 1.5 bit/stage ADC requires 2 bit decision
phases for £Vge/4

— A single ZCBC stage is switched between 2 VCDLs

* This method does not work for the 1%t stage
— Clocked comparators are used for the 1% stage
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Original Vv
cBSC
Comparator
Input Stage

CBSC vs ZCBC

This ZCBC
— Zero-
o] Crossing
D Detector
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CBSC vs ZCBC

Original CBSC’ This ZCBC
Energy 2VDDIDTC VDDTDATZ
Noise Bandwidth 1 1
oise bandwiat 2aTC 2ATZ
Noise Spectral 8k T 4k T
. —(Veg — V —(Veg — V
Density 3|D( Gs — VT1) 3|D( s — V)

Noise Energy
Product (o =0.5)
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?kTVDD(VGS — V1)

2

ngVDD(VGS - V1)

* Theoretical 8x better performance from this ZCBC

— This ZCBC only requires a single gain stage

— Original CBSC can be fully differential
1. Forienza, et.al, JSSC, Dec 2006.
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Chip Micrograph

* 0.18um CMOS
* 0.05mm?
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Measured Results - Linearity
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Measured Results — Frequency
Response
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Measured Results — Power
Consumption

* The complete ADC
draws NO static current.

— The current sources 9 ADC Power Consumption
provide the transfer 2 A - A -
charge only. R N

— The DZCD consumes only A o B
the power necessary to =
switch the sampling oy - - -
switch. 4960 125 150 175 200

. Only dynamic CV2f Sampling Frequency (MHz)

power is consumed.

27



ADC Performance Summary

Sampling Freq. 100MHz 200MHz
Input Range 1V 1V
DNL +/- 0.50 LSB +/- 0.75 LSB
INL +/- 0.75 LSB +/- 1.00 LSB
ENOB 6.9b 6.4b
Power 4.5mW 8.5omW

FOM (P/28Nos/2f, )

0.38 pJ/step

0.51 pJ/step
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Measured Results — FOM
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FOM Remarks

* 66% of the power consumption is from the digital
power supply
— Technology scaling will significantly improve the FOM

* The noise floor is more than 4x higher than
theoretical and simulated results predict
— Noise coupling from the 1/O's is a problem
—Deep NWELL, better packaging, etc. will help
— Not all issues with this architecture are known

— Work is underway to improve noise rejection and to
reach theoretical performance.



Conclusions

Introduced Zero-Crossing Based Circuits as a
generalization of CBSC circuits

Introduced an energy efficient Dynamic Zero-
Crossing Detector

Introduced Current Source Splitting to
eliminate series switches and improve linearity

Replaced clocked comparators with Bit Decision
Flip-Flops to improve speed

Demonstrated these techniques with an 8b,
200MS/s ZCBC Pipelined ADC
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