25.5 A Zero-Crossing Based 8b, 200MS/s Pipelined ADC

Lane Brooks and Hae-Seung Lee

Massachusetts Institute of Technology

Outline

- Motivation
- Review of Op-amp & Comparator-Based Circuits
- Introduction of Zero-Crossing Based Circuits
- Implementation Details
- Performance Results
- Conclusion

Motivation

- Technology scaling is making opamp-based SC circuit design increasingly difficult
- Op-amp design issues
 - Decreasing voltage supplies
 - Reduces signal swing
 - Requires increase in capacitance to maintain SNR
 - Decreasing intrinsic device gain
 - •Cascode gain stages
 - Exacerbates low swing problem
 - •Cascade gain stages
 - Stability versus bandwidth/power tradeoff

Comparator Based Circuits

- Comparator Based Switched Capacitor¹ (CBSC) Circuits:
 - Eliminate op-amps and stability issues
 - Utilize architectures similar to op-amp based circuits
 - Works with ADCs, DACs, Filters, Amplifiers, etc.
 - Amenable to scaled technologies
 - Operate more power-efficiently

1. T. Sepke, et. al., "Comparator-based switched-capacitor circuits for scaled CMOS technologies," ISSCC 06.

Op-amp Based Switched-Capacitor Charge Transfer Phase

- Op-amp forces virtual ground condition
- Exponential settling to virtual ground

Comparator-Based Switched-Capacitor Charge Transfer Phase

- Current source sweeps the output voltage
- Comparator detects virtual ground condition and turns off current source
- Correct output voltage is sampled on C_L

CBSC Observation

- A general purpose comparator must compare two arbitrary voltages
- CBSC comparators:
 - Do not have arbitrary inputs
 - Have inputs that are constant slope voltage ramps
 - Perform a zerocrossing detection

Zero-Crossing Based Circuits (ZCBC)

- CBSC circuits generalize to Zero-Crossing Based Circuits (ZCBC)
 - Zero-Crossing Detector (ZCD) replaces comparator

Dynamic ZCBC Transfer Phase

- C₁ and C₂ sample the input signal in a previous sampling phase
- Transfer phase goal: Charge C_L to the voltage that realizes the virtual ground condition on v_x

Dynamic ZCBC Implementation

- φ_I initializes charge transfer
 - v_P gets reset high
 - $-\mathbf{v}_{o}$ gets reset low
 - $-\mathbf{v}_{\mathbf{x}}$ gets pushed down

Dynamic ZCBC Implementation

- Current source turns on
 v_o and v_x start ramping
- v_x ramps until it turns on M₂
 - $-M_2$ pulls v_P low
 - Sampling switch M₁ turns off
 - Bottom-plate sampling

Dynamic Zero-Crossing Detector

- Not suitable as a general purpose comparator
 - Switching threshold depends on input waveform
- Fast
- Simple
- Rail-to-rail swing
- Amenable to scaling
- Energy efficient draws no static current

Dynamic Zero-Crossing Detector Limitations

- Inherently single-ended
 - Suitable for low to medium resolutions
- The offset is ramp-rate, temperature, and process dependent
 - An auto-zeroing circuit can null these dependencies

Simplified ZCBC Pipelined ADC Schematic

Current Source Splitting

- Switches S₁ and S₂
 cause non-linearities and limits output swing
- Splitting the current source up removes the series switches
- Switches S₃ and S₄
 remove current mismatch
- All other switches are connected to DC voltages and do not contribute non-linearities.

Bit Decision Comparators

- Bit decisions comparators (BDC) provide a coarse quantization of the output voltage \boldsymbol{v}_{o}
- When implemented using clocked comparators, they lie in the critical path
 - They make their decision after one stage ends ramping and before the next stage can begin.
 - Meta-stability issues can arise if they are not given ample time to make their decision
 - Requires the design of a fast clocked comparator

Bit Decision Flip-Flops

- The time at which v_P switches is proportional to the output voltage.
- Sampling v_P with a Bit
 Decision Flip-Flop (BDFF)
 provides a coarse
 quantization.
- Analogous to a single-slope ADC.

Complete ZCBC Schematic

BDFF Phase Generation

- A Voltage Controlled Delay Line (VCDL) generates the bit decision clock phase
- A charge pump controls v_{G} to set the delay

BDFF Feedback Loop

- Use bit decision threshold V_{REF}/4 as input into a replica ZCBC stage
- The bit decision **D** out of the replica stage indicates if φ_{BD} is ahead or behind
- D adjusts the VCDL delay each clock cycle
- The small amount of jitter on \$\overline{\beta BD}\$ in steady-state is not problematic because of overrange protection

Bit Decision Flip-Flop Discussion

- Implementing the BDC as a flip-flop removes it from the critical path
 - The bit decisions are made in parallel with the voltage ramp and are ready by the time the transfer phase ends
 - Eliminates meta-stability issues
 - Eliminates the need for a fast clocked comparator
 - A standard flip-flop suffices
- A 1.5 bit/stage ADC requires 2 bit decision phases for $\pm V_{REF}/4$
 - A single ZCBC stage is switched between 2 VCDLs
- This method does not work for the 1st stage
 - Clocked comparators are used for the 1st stage

CBSC vs ZCBC

CBSC vs ZCBC

	Original CBSC ¹	This ZCBC
Energy	$2V_{DD}I_{D}T_{C}$	ν _{dd} ī _d Δt _z
Noise Bandwidth	$\frac{1}{2\alpha T_{C}}$	$\frac{1}{2\Delta T_Z}$
Noise Spectral Density	$\frac{8 \text{kT}}{3 \text{I}_{\text{D}}} (\text{V}_{\text{GS}} - \text{V}_{\text{T}})$	$\frac{4 \text{kT}}{3 \overline{\text{I}}_{\text{D}}} (\text{V}_{\text{GS}} - \text{V}_{\text{T}})$
Noise Energy Product $(\alpha = 0.5)$	$\frac{16}{3} \text{kTV}_{\text{DD}}(\text{V}_{\text{GS}}-\text{V}_{\text{T}})$	$\frac{2}{3} \text{kTV}_{\text{DD}}(\text{V}_{\text{GS}}-\text{V}_{\text{T}})$

- Theoretical 8x better performance from this ZCBC
 - This ZCBC only requires a single gain stage
 - Original CBSC can be fully differential
 - 1. Forienza, et.al, JSSC, Dec 2006.

Chip Micrograph

- 0.18um CMOS
- 0.05mm²

Measured Results - Linearity

Measured Results – Frequency Response

Measured Results – Power Consumption

- The complete ADC draws NO static current.
 - The current sources provide the transfer charge only.
 - The DZCD consumes only the power necessary to switch the sampling switch.
- Only dynamic CV²f power is consumed.

ADC Performance Summary

Sampling Freq.	100MHz	200MHz
Input Range	1V	1V
DNL	+/- 0.50 LSB	+/- 0.75 LSB
INL	+/- 0.75 LSB	+/- 1.00 LSB
ENOB	6.9b	6.4b
Power	4.5mW	8.5mW
FOM (P/2 ^{ENOB} /2f _{in})	0.38 pJ/step	0.51 pJ/step

Measured Results – FOM Comparison

FOM Remarks

 66% of the power consumption is from the digital power supply

- Technology scaling will significantly improve the FOM

- The noise floor is more than 4x higher than theoretical and simulated results predict
 - -Noise coupling from the I/O's is a problem
 - Deep NWELL, better packaging, etc. will help
 - -Not all issues with this architecture are known
 - -Work is underway to improve noise rejection and to reach theoretical performance.

Conclusions

- Introduced Zero-Crossing Based Circuits as a generalization of CBSC circuits
- Introduced an energy efficient Dynamic Zero-Crossing Detector
- Introduced Current Source Splitting to eliminate series switches and improve linearity
- Replaced clocked comparators with **Bit Decision Flip-Flops** to improve speed
- Demonstrated these techniques with an 8b, 200MS/s ZCBC Pipelined ADC

Acknowledgements

- MIT Center for Integrated Circuits and Systems (CICS) for funding
- National Defense Science and Engineering Graduate (NDSEG) Fellowship for funding

